Magnesium-rich silicates are ubiquitous both terrestrially and astronomically, where they are often present as small particles. Nanosized Mg-rich silicate particles are likely to be particularly important for understanding the formation, processing, and properties of cosmic dust grains. Although astronomical observations and laboratory studies have revealed much about such silicate dust, our knowledge of this hugely important class of nanosolids largely rests on top-down comparisons with the properties of bulk silicates. Herein, we provide a foundational bottom-up study of the structure and properties of Mg-rich nanosilicates based on carefully procured atomistic models. Specifically, we employ state-of-the-art global optimization methods to search for the most stable structures of silicate nanoclusters with olivine (MgSiO) and pyroxene (MgSiO) compositions with = 1-10. To ensure the reliability of our searches, we develop a new interatomic potential that has been especially tuned for nanosilicates. Subsequently, we refine these searches and calculate a range of physicochemical properties of the most stable nanoclusters using accurate density functional theory based electronic structure calculations. We report a detailed analysis of structural and energy properties, charge distributions, and infrared vibrational spectra, where in all cases we compare our finding for nanosilicates with those of the corresponding bulk silicate crystals. For most properties considered, we find large differences with respect to the bulk limit, underlining the limitations of a top-down approach for describing these species. Overall, our work provides a new platform for an accurate and detailed understanding of nanoscale silicates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7009040 | PMC |
http://dx.doi.org/10.1021/acsearthspacechem.9b00139 | DOI Listing |
J Sep Sci
January 2025
Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.
View Article and Find Full Text PDFViruses
January 2025
Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
Retroviral genome selection and virion assembly remain promising targets for novel therapeutic intervention. Recent studies have demonstrated that the Gag proteins of Rous sarcoma virus (RSV) and human immunodeficiency virus type-1 (HIV-1) undergo nuclear trafficking, colocalize with nascent genomic viral RNA (gRNA) at transcription sites, may interact with host transcription factors, and display biophysical properties characteristic of biomolecular condensates. In the present work, we utilized a controlled in vitro condensate assay and advanced imaging approaches to investigate the effects of interactions between RSV Gag condensates and viral and nonviral RNAs on condensate abundance and organization.
View Article and Find Full Text PDFViruses
December 2024
Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA.
Since the discovery of the Australia antigen, now known as the hepatitis B surface antigen (HBsAg), significant research has been conducted to elucidate its physical, chemical, structural, and functional properties. Subviral particles (SVPs) containing HBsAg are highly immunogenic, non-infectious entities that have not only revolutionized vaccine development but also provided critical insights into HBV immune evasion and viral assembly. Recent advances in cryo-electron microscopy (cryo-EM) have uncovered the heterogeneity and dynamic nature of spherical HBV SVPs, emphasizing the essential role of lipid-protein interactions in maintaining particle stability.
View Article and Find Full Text PDFPharmaceutics
January 2025
Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria.
Resveratrol is a natural polyphenol (stilbenoid), which can be found in grape skin, red wine, blueberries, peanuts and others. The biological properties of resveratrol, in particular antioxidant, anti-inflammatory, anticancer, estrogenic, vasorelaxant and cardioprotective activity, are the main reason for its importance in medicine and pharmacy. Despite all of its advantages, however, there are many problems related to this polyphenolic substance, such as low stability, water insolubility, poor bioavailability and fast metabolism.
View Article and Find Full Text PDFPharmaceutics
January 2025
Faculty of Pharmacy, "Grigore. T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania.
Magnolol (MG) and honokiol (HK) are bioactive compounds extracted from and trees with significant pharmacological properties, including antioxidant and antibacterial activity. However, their poor water solubility and low bioavailability limit the therapeutic potential. To address these limitations, this study aims to develop MG and HK formulations by co-electrospinning using custom-synthesized β-cyclodextrin-oligolactide (β-CDLA) derivatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!