Chemical biology tools for probing transcytosis at the blood-brain barrier.

Chem Sci

Department of Chemistry , Imperial College London, Wood Lane , London , W12 0BZ , UK . Email: ; Email:

Published: December 2019

Absorptive- and receptor-mediated transcytosis (AMT/RMT) are widely studied strategies to deliver therapeutics across the blood-brain barrier (BBB). However, an improved understanding of the mechanism surrounding trafficking is required that could promote delivery. Accordingly, we designed a flexible platform that merged AMT and RMT motifs on a single scaffold to probe various parameters (ligand, affinity, valency, position) in a screening campaign. During this process we adapted an BBB model to reliably rank transcytosis of the vehicle library. Our results demonstrate heightened uptake and trafficking for the shuttles, with a structure-activity relationship for transcytosis emerging. Notably, due to their small size, the majority of shuttles demonstrated increased permeation compared to transferrin, with the highest performing shuttle affording a 4.9-fold increase. Consequently, we have identified novel peptide conjugates that have the capacity to act as promising brain shuttles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7006505PMC
http://dx.doi.org/10.1039/c9sc04024bDOI Listing

Publication Analysis

Top Keywords

blood-brain barrier
8
chemical biology
4
biology tools
4
tools probing
4
transcytosis
4
probing transcytosis
4
transcytosis blood-brain
4
barrier absorptive-
4
absorptive- receptor-mediated
4
receptor-mediated transcytosis
4

Similar Publications

The blood-brain-barrier prevents many imaging agents and therapeutics from being delivered to the brain that could fight central nervous system diseases such as Alzheimer's disease and strokes. However, techniques such as the use of stapled peptides or peptide shuttles may allow payloads through, with bioconjugation achieved bio-orthogonal tetrazine/norbornene click chemistry. A series of lanthanide-tetrazine probes have been synthesised herein which could be utilised in bio-orthogonal click chemistry with peptide-based delivery systems to deliver MRI agents through the blood-brain-barrier.

View Article and Find Full Text PDF

Novel multipotent conjugate bearing tacrine and donepezil motifs with dual cholinergic inhibition and neuroprotective properties targeting Alzheimer's disease.

RSC Med Chem

January 2025

Área de Neurofisiología celular, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Medellín Colombia

In this work, we developed potential multifunctional agents to combat Alzheimer's disease. According to our strategy, fragments of tacrine and donepezil were merged in a unique hybrid structure. After successfully synthesizing the compounds, they were evaluated for their dual AChE/BuChE inhibitor potential and neuroprotector response using a glutamate-induced excitotoxicity model.

View Article and Find Full Text PDF

Brain-targeting drug delivery systems: The state of the art in treatment of glioblastoma.

Mater Today Bio

February 2025

Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.

Glioblastoma (GBM) is the most prevalent primary malignant brain tumor, characterized by a high mortality rate and a poor prognosis. The blood-brain barrier (BBB) and the blood-tumor barrier (BTB) present significant obstacles to the efficacy of tumor-targeted pharmacotherapy, thereby impeding the therapeutic potential of numerous candidate drugs. Targeting delivery of adequate doses of drug across the BBB to treat GBM has become a prominent research area in recent years.

View Article and Find Full Text PDF

Even with recent advancements in surgery and multimodal adjuvant therapy, brain cancer treatment is still difficult. The blood-brain barrier and the potentially deadly medications' nonspecificity have made pharmacological treatment for brain cancer particularly ineffective. The nanoparticle has surfaced as a viable brain delivery vector that can solve the issues with existing approaches.

View Article and Find Full Text PDF

Navigating the blood-brain barrier: enhancing blood culture practices in the neuro-ICU.

Infect Control Hosp Epidemiol

January 2025

Division of Infectious Diseases and International Health, Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, USA.

This study evaluates the implementation of a blood culture (BCx) algorithm in the neurology ICU (NICU) to reduce BCx event (BCE) rates. Results show a reduction in BCE rates, without increasing adverse outcomes. The findings support the feasibility of BCx algorithms for improving diagnostic stewardship in the specialized NICU population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!