Dried Watermelon Rind Mash Diet Increases Plasma l-Citrulline Level in Chicks.

J Poult Sci

Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan.

Published: January 2019

Heat stress is an increasing concern in poultry industry as it can cause a rise in the body temperature of chickens. Recently, we reported that l-citrulline (l-Cit) is a potential hypothermic agent that could improve thermotolerance in chicks. However, synthetic l-Cit has not yet been approved for inclusion in animal diets. l-Cit was first isolated from watermelon. Watermelon rind (WR), an agricultural waste product, contains more l-Cit than the flesh of the fruit. In the current study, the chemical composition and l-Cit content of WR dried powder (WRP) were determined. WRP was mixed with water at a ratio of 4:5 (wt/v) to make WRP mash, and then mixed with a commercial starter diet to prepare a 9% WRP mash diet. The WRP mash diet was fed to 3- to 15-day-old chicks and daily food intake, body weight, and changes in rectal temperature were measured. At the end of the experiment, blood was collected from the chicks to analyze plasma l-Cit and other free amino acids. The chemical analysis of WRP revealed a variety of components including 19.1% crude protein. l-Cit was the most abundant free amino acid in WRP (3.18 mg/g). Chronic supplementation of the WRP mash diet significantly increased compensatory food intake, plasma l-Cit, l-ornithine, and l-tyrosine in chicks. WRP mash diet did not affect the body temperature of the chicks. In conclusion, WRP mash diet supplementation increased plasma l-Cit concentration in chicks. The increase in plasma l-Cit concentrations suggest that WR could be used as a natural source of l-Cit in chicks to ameliorate the adverse effects of heat stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993888PMC
http://dx.doi.org/10.2141/jpsa.0180018DOI Listing

Publication Analysis

Top Keywords

mash diet
24
wrp mash
24
plasma l-cit
16
l-cit
11
wrp
10
watermelon rind
8
chicks
8
heat stress
8
body temperature
8
food intake
8

Similar Publications

Lipophagy and epigenetic alterations are related to metabolic dysfunction-associated steatotic liver disease progression in an experimental model.

World J Hepatol

December 2024

Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil.

Background: Genetic and epigenetic alterations are related to metabolic dysfunction-associated steatotic liver disease (MASLD) pathogenesis.

Aim: To evaluate micro (mi)RNAs and lipophagy markers in an experimental model of metabolic dysfunction-associated steatohepatitis (MASH).

Methods: Adult male Sprague Dawley rats were randomized into two groups: Control group ( = 10) fed a standard diet; and intervention group ( = 10) fed a high-fat-choline-deficient diet for 16 weeks.

View Article and Find Full Text PDF

Liver B Cells Promotes MASLD Progression via the Apelin/APLNR System.

Int J Med Sci

January 2025

Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.

Investigate the role of the apelin/APLNR axis in metabolic dysfunction-associated steatotic liver disease (MASLD), focusing on the progression from metabolic dysfunction-associated simple steatotic liver (MASS) to metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis, with emphasis on liver B cells. Serum samples from MASLD patients and liver tissues from hepatocellular carcinoma patients were collected to measure apelin and APLNR protein expression. C57BL/6J mouse models of varying MASLD stages were developed using a high-fat diet and CCl.

View Article and Find Full Text PDF

PPARα-ERRα crosstalk mitigates metabolic dysfunction-associated steatotic liver disease progression.

Metabolism

December 2024

Translational Nuclear Receptor Research, UGent Department of Biomolecular Medicine, VIB Center for Medical Biotechnology, Ghent, Belgium. Electronic address:

Background And Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD), the most prevalent liver disease worldwide, continues to rise. More effective therapeutic strategies are urgently needed. We investigated how targeting two key nuclear receptors involved in hepatic energy metabolism, peroxisome proliferator-activated receptor alpha (PPARα) and estrogen-related receptor alpha (ERRα), ameliorates MASLD.

View Article and Find Full Text PDF

A gut microbiota-independent mechanism shapes the bile acid pool in mice with MASH.

JHEP Rep

November 2024

Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium.

Article Synopsis
  • The study investigates how changes in bile acids contribute to metabolic dysfunction-associated steatohepatitis (MASH), focusing on the role of gut bacteria.
  • Mice with MASH on a high-fat diet were compared to their wildtype counterparts to isolate the effects of MASH from diet and environmental factors.
  • Findings show that MASH alters bile acid levels through mechanisms unrelated to gut microbiota, particularly highlighting increased enzyme activity in the liver that reduces secondary bile acid levels.
View Article and Find Full Text PDF

Purpose: Metabolic dysfunction-associated steatohepatitis (MASH) is a prevalent disease caused by high fat and high cholesterol intake, which leads to systemic deterioration. The aim of this research is to conduct a psychobiological exploration of MASH in adult male rats.

Methods: Subjects who were administered a high-fat and high-cholesterol diet for 14 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!