NOTCH receptor signaling plays a pivotal role in liver homeostasis and hepatocarcinogenesis. However, the role of NOTCH pathway mutations and the NOTCH target gene HES5 in liver tumorigenesis are poorly understood. Here we performed whole-exome sequencing of 54 human HCC specimens and compared the prevalence of NOTCH pathway component mutations with the TCGA-LIHC cohort (N = 364). In addition, we functionally characterized the NOTCH target HES5 and the patient-derived HES5-R31G mutation in vitro and in an orthotopic mouse model applying different oncogenic backgrounds, to dissect the role of HES5 in different tumor subgroups in vivo. We identified nonsynonymous mutations in 14 immediate NOTCH pathway genes affecting 24.1% and 16.8% of HCC patients in the two independent cohorts, respectively. Among these, the HES5-R31G mutation was predicted in silico to have high biological relevance. Functional analyses in cell culture showed that HES5 reduced cell migration and clonogenicity. Further analyses revealed that the patient-derived HES5-R31G mutant protein was non-functional due to loss of DNA binding and greatly reduced nuclear localization. Furthermore, HES5 exhibited a negative feedback loop by directly inhibiting the NOTCH target HES1 and downregulated the pro-proliferative MYC targets ODC1 and LDHA. Interestingly, HES5 inhibited MYC-dependent hepatocarcinogenesis, whereas it promoted AKT-dependent liver tumor formation and stem cell features in a murine model. Thus, NOTCH pathway component mutations are commonly observed in HCC. Furthermore, the NOTCH target gene HES5 has both pro- and anti-tumorigenic functions in liver cancer proposing a driver gene dependency and it promotes tumorigenesis with its interaction partner AKT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142020PMC
http://dx.doi.org/10.1038/s41388-020-1198-3DOI Listing

Publication Analysis

Top Keywords

notch target
20
notch pathway
16
target gene
12
gene hes5
12
notch
10
hes5
8
mutations notch
8
pathway component
8
component mutations
8
patient-derived hes5-r31g
8

Similar Publications

Foxm1 promotes differentiation of neural progenitors in the zebrafish inner ear.

Dev Biol

January 2025

Biology Department, Texas A&M University, College Station, TX 7843-3258. Electronic address:

During development of the vertebrate inner ear, sensory epithelia and neurons of the statoacoustic ganglion (SAG) arise from lineage-restricted progenitors that proliferate extensively before differentiating into mature post-mitotic cell types. Development of progenitors is regulated by Fgf, Wnt and Notch signaling, but how these pathways are coordinated to achieve an optimal balance of proliferation and differentiation is not well understood. Here we investigate the role in zebrafish of Foxm1, a transcription factor commonly associated with proliferation in developing tissues and tumors.

View Article and Find Full Text PDF

Adenoid cystic carcinomas (AdCC) of salivary gland origin have long been categorized as fusion-defined carcinomas owing to the almost universal presence of the gene fusion MYB::NFIB, or less commonly MYBL1::NFIB. Sinonasal AdCC is an aggressive salivary gland malignancy with no effective systemic therapy. Therefore, it is urgent to search for potentially targetable genetic alterations associated with AdCC.

View Article and Find Full Text PDF

Pancreatic cancer is a highly lethal malignancy with few effective treatment options. Connexin 31 (Cx31) is a membrane protein capable of forming hexameric channels to facilitate the exchange of metabolites and signaling molecules. Yet, the contribution of Cx31 to the onset and progression of pancreatic cancer remains to be understood.

View Article and Find Full Text PDF

[The potential of BCL6B as a therapeutic target for chorioretinal vascular lesions].

Nihon Yakurigaku Zasshi

January 2025

Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University.

The ocular tissue is one of the most densely populated tissues in the body with extremely small blood vessels, and vascular lesions have been reported to be a factor in vision loss and visual field defects in many ocular diseases. Currently, vascular endothelial growth factor (VEGF)-targeted agents are the first line of treatment for intraocular vascular lesions, however, there are some cases in which they are not fully effective. Therefore, we explored pathogenic molecules other than VEGF, aiming to develop new molecular-targeted therapy.

View Article and Find Full Text PDF

Oral Cancer Stem Cells: A Comprehensive Review of Key Drivers of Treatment Resistance and Tumor Recurrence.

Eur J Pharmacol

January 2025

Department of Conservative Dentistry & Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India. Electronic address:

Oral squamous cell carcinoma (OSCC) remains a major cause of morbidity and mortality worldwide with high recurrence rates and resistance to conventional therapies. Recent studies have highlighted the pivotal role of oral cancer stem cells (OCSCs) in driving treatment resistance and tumor recurrence. OCSCs possess unique properties, including self-renewal, differentiation potential, and resistance to chemotherapy and radiotherapy, which contribute to their ability to survive treatment and initiate tumor relapse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!