Ocean acidification is expected to have detrimental consequences for the most abundant calcifying phytoplankton species Emiliania huxleyi. However, this assumption is mainly based on laboratory manipulations that are unable to reproduce the complexity of natural ecosystems. Here, E. huxleyi coccolith assemblages collected over a year by an autonomous water sampler and sediment traps in the Subantarctic Zone were analysed. The combination of taxonomic and morphometric analyses together with in situ measurements of surface-water properties allowed us to monitor, with unprecedented detail, the seasonal cycle of E. huxleyi at two Subantarctic stations. E. huxleyi subantarctic assemblages were composed of a mixture of, at least, four different morphotypes. Heavier morphotypes exhibited their maximum relative abundances during winter, coinciding with peak annual TCO and nutrient concentrations, while lighter morphotypes dominated during summer, coinciding with lowest TCO and nutrients levels. The similar seasonality observed in both time-series suggests that it may be a circumpolar feature of the Subantarctic zone. Our results challenge the view that ocean acidification will necessarily lead to a replacement of heavily-calcified coccolithophores by lightly-calcified ones in subpolar ecosystems, and emphasize the need to consider the cumulative effect of multiple stressors on the probable succession of morphotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018777PMC
http://dx.doi.org/10.1038/s41598-020-59375-8DOI Listing

Publication Analysis

Top Keywords

emiliania huxleyi
8
ocean acidification
8
subantarctic zone
8
huxleyi subantarctic
8
subantarctic
5
huxleyi
5
morphotypes
5
full annual
4
annual monitoring
4
monitoring subantarctic
4

Similar Publications

Coccolithophores comprise a major component of the oceanic carbon cycle. These unicellular algae produce ornate structures made of calcium carbonate, termed coccoliths, representing ~ 50% of calcite production in the open ocean. The exact molecular mechanisms which direct and control coccolith formation are unknown.

View Article and Find Full Text PDF

Prevention of transmission of African swine fever virus (ASFV) through contaminated feed ingredients and complete feed is an important component of biosecurity protocols for global feed supply chains. Use of extended storage times for feed ingredients has become a popular and emerging mitigation strategy that may allow partial inactivation of ASFV before manufacturing swine feeds. However, the effectiveness of this strategy is unclear because limited studies have been conducted using diverse methodologies and insufficiently sensitive measures of virus viability of only a few types of feed matrices.

View Article and Find Full Text PDF

Microzooplankton grazing on the coccolithophore and its role in the global calcium carbonate cycle.

Sci Adv

November 2024

Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.

Identifying mechanisms driving the substantial dissolution of biogenic CaCO (60 to 80%) in surface and mesopelagic waters of the global ocean is critical for constraining the surface ocean's alkalinity and inorganic carbon budgets. We examine microzooplankton grazing on coccolithophores, photosynthetic calcifying algae responsible for a majority of open-ocean CaCO production, as a mechanism driving shallow dissolution. We show that microzooplankton grazing dissolves 92 ± 7% of ingested coccolith calcite, which may explain 50 to 100% of the observed CaCO dissolution in supersaturated surface waters.

View Article and Find Full Text PDF

Warming and UV Radiation Alleviate the Effect of Virus Infection on the Microalga Emiliania huxleyi.

Plant Cell Environ

November 2024

State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.

The marine microalga Emiliania huxleyi is widely distributed in the surface oceans and is prone to infection by coccolithoviruses that can terminate its blooms. However, little is known about how global change factors like solar UV radiation (UVR) and ocean warming affect the host-virus interaction. We grew the microalga at 2 temperature levels with or without the virus in the presence or absence of UVR and investigated the physiological and transcriptional responses.

View Article and Find Full Text PDF

Molecular mechanisms driving species-specific environmental sensitivity in coccolithophores are unclear but crucial in understanding species selection and adaptation to environmental change. This study examined proteomic and physiological changes in three species under varying pH conditions. We showed that changing pH drives intracellular oxidative stress and changes membrane potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!