The effect of Matrigel as scaffold material for neural stem cell transplantation for treating spinal cord injury.

Sci Rep

Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.

Published: February 2020

Traumatic injury to the spinal cord causes permanent loss of function and major personal, social, and economic problems. Cell-based delivery strategies is a promising approach for treating spinal cord injury (SCI). However, the inhospitable microenvironment in the injured spinal cord results in poor cell survival and uncontrolled differentiation of the transplanted stem cells. The combination of a scaffold with cells has been developed with a tendency for achieving greater survival and integration with the host tissue. We investigated the effect of Matrigel combined with neural stem cells (NSCs) in vitro and in vivo. We compared the effect of different types of scaffold on the survival and differentiation of brain-derived NSCs in an in vitro culture. Subsequently, NSCs were transplanted subcutaneously into nude mice to detect graft survival and differentiation in vivo. Finally, phosphate-buffered saline (PBS), Matrigel alone, or Matrigel seeded with NSCs was injected into 48 subacute, clinically relevant rat models of SCI (16 rats per group). Matrigel supported cell survival and differentiation efficiently in vitro and in vivo. SCI rats transplanted with NSCs in Matrigel showed improved behavioral recovery and neuronal and reactive astrocyte marker expression levels compared to PBS- or Matrigel-transplanted rats. Functional repair and neuronal and reactive astrocyte marker expression was slightly improved in the Matrigel-alone group relative to the PBS group, but not statistically significantly. These data suggest that Matrigel is a promising scaffold material for cell transplantation to the injured spinal cord.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018993PMC
http://dx.doi.org/10.1038/s41598-020-59148-3DOI Listing

Publication Analysis

Top Keywords

spinal cord
20
survival differentiation
12
scaffold material
8
neural stem
8
cell transplantation
8
treating spinal
8
cord injury
8
injured spinal
8
cell survival
8
stem cells
8

Similar Publications

Spatial distribution-based progression of spinal cord injury pathology: a key role for neuroimmune cells.

Front Immunol

January 2025

Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Department of Neurosurgery, Shanghai, China.

An external trauma, illness, or other pathological cause can harm the structure and function of the spinal cord, resulting in a significant neurological disorder known as spinal cord injury (SCI). In addition to impairing movement and sensory functions, spinal cord injury (SCI) triggers complex pathophysiological responses, with the spatial dynamics of immune cells playing a key role. The inflammatory response and subsequent healing processes following SCI are profoundly influenced by the spatial distribution and movement of immune cells.

View Article and Find Full Text PDF

Objective: This study aimed to elucidate the clinical manifestations, laboratory findings and outcomes of patients with intravascular large B cell lymphoma (IVLBCL) with neurological involvement and to differentiate IVLBCL with and without neurological involvement.

Methods: A cohort study was conducted at Siriraj Hospital, Mahidol University, Thailand, between January 2005 and September 2024. Clinical data, laboratory values and central nervous system imaging results were analysed.

View Article and Find Full Text PDF

Here, we present a case of Guillain-Barré syndrome (GBS) that mimicked brain death. A 66-year-old lady with a medical history of breast cancer (now receiving hormone therapy), hypertension, and hypothyroidism, presented to the emergency department. The patient was admitted to the neuro ICU with absent brainstem and spinal cord responses, concerning for possible brain death.

View Article and Find Full Text PDF

Complex regional pain syndrome (CRPS) is a chronic pain condition characterized by significant sensory, motor, and autonomic dysfunction, often following trauma or nerve injury. Historically known as causalgia and reflex sympathetic dystrophy, CRPS manifests as severe, disproportionate pain, often accompanied by hyperalgesia, allodynia, trophic changes, and motor impairments. Classified into type I (without nerve injury) and type II (associated with nerve damage), CRPS exhibits a complex pathophysiology involving peripheral and central sensitization, neurogenic inflammation, maladaptive brain plasticity, and potential autoimmune and psychological influences.

View Article and Find Full Text PDF

Background: Tuberculosis is among the most devastating infectious diseases worldwide. Spinal tuberculosis is not easy to detect at an early stage, which without effective treatment often leads to spinal deformity and spinal cord damage which in turn cause complications such as paraplegia and quadriplegia. In this study, we established a model using three concentrations of bacteria and carried out a comprehensive evaluation of the model by imaging, general observations, and histopathological and bacteriological studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!