Background: The mechanisms by which macrophage phenotype contributes to mesenchymal stem cells (MSC)-mediated bone repair remain unclear. In this work, we investigated the influence of factors released by human macrophages polarized to a pro-inflammatory or an anti-inflammatory phenotype on the ability of human MSC to attach, migrate, and differentiate toward the osteoblastic lineage. We focused on the role of TNF-α and IL-10, key pro-inflammatory and anti-inflammatory cytokines, respectively, in regulating MSC functions.
Methods: MSC were treated with media conditioned by pro-inflammatory or anti-inflammatory macrophages to study their influence in cell attachment, migration, and osteogenic differentiation. The involvement of TNF-α and IL-10 in the regulation of MSC functions was investigated using neutralizing antibodies and recombinant cytokines.
Results: Treatment of MSC with media conditioned by pro-inflammatory or anti-inflammatory macrophages promoted cell elongation and enhanced MSC ability to attach and migrate. These effects were more noticeable when MSC were treated with media from pro-inflammatory macrophages. Interestingly, MSC osteogenic activity was enhanced by factors released by anti-inflammatory macrophages, but not by pro-inflammatory macrophages. Significant IL-10 levels originated from anti-inflammatory macrophages enhanced MSC osteogenesis by increasing ALP activity and mineralization in MSC layers cultured under osteogenic conditions. Moreover, macrophage-derived IL-10 regulated the expression of the osteogenic markers RUNX2, COL1A1, and ALPL. Notably, low TNF-α levels secreted by anti-inflammatory macrophages increased ALP activity in differentiating MSC whereas high TNF-α levels produced by pro-inflammatory macrophages had no effects on osteogenesis. Experiments in which MSC were treated with cytokines revealed that IL-10 was more effective in promoting matrix maturation and mineralization than TNF-α.
Conclusions: Factors secreted by pro-inflammatory macrophages substantially increased MSC attachment and migration whereas those released by anti-inflammatory macrophages enhanced MSC osteogenic activity as well as cell migration. IL-10 was identified as an important cytokine secreted by anti-inflammatory macrophages that potentiates MSC osteogenesis. Our findings provide novel insights into how environments provided by macrophages regulate MSC osteogenesis, which may be helpful to develop strategies to enhance bone regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020593 | PMC |
http://dx.doi.org/10.1186/s13287-020-1578-1 | DOI Listing |
Sci Rep
January 2025
Key Laboratory of Cancer Immunotherapy of Guangdong Tertiary Education, Guangdong CAR-T Treatment Related Adverse Reaction Key Laboratory, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, China.
Previously, we demonstrated that natural host-defence peptide caerin 1.1/caerin 1.9 (F1/F3) increases the efficacy of anti-PD-1 and therapeutic vaccine, in a HPV16 + TC-1 tumour model, but the anti-tumor mechanism of F1/F3 is still unclear.
View Article and Find Full Text PDFJ Control Release
January 2025
Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China; Zhuhai Hospital of Integrated Traditional Chinese & Western Medicine, Zhuhai, Guangdong, China. Electronic address:
Dry eye disease (DED) is a complex and multifactorial ocular surface disease. Reactive oxygen species (ROS) are of pivotal importance in the inflammatory processes and biological dysfunction associated with DED. In this study, an injectable hydrogel, designated as OHACDgel, was created by combining oxidized HA-containing aldehyde groups (OHA) and gelation (gel) via dynamic covalent linkages of the hydrazine bonds, is employed as the carrier, while polyethylene imine-functionalized carbon dots (PEI-CD) can form dynamic chemical bonds with the hydrogel, thus prolonging the retention time of the ocular.
View Article and Find Full Text PDFMucosal Immunol
January 2025
Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center Pittsburgh PA USA; Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA. Electronic address:
Host response aimed at eliminating the infecting pathogen, as well as the pathogen itself, can cause tissue injury. Tissue injury leads to the release of a myriad of cellular components including mitochondrial DNA, which the host senses through pattern recognition receptors. How the sensing of tissue injury by the host shapes the anti-pathogen response remains poorly understood.
View Article and Find Full Text PDFCytokine
January 2025
Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China; Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China. Electronic address:
Background: Immune checkpoint inhibitors has opened up new avenues for cancer treatment, but serious cardiac injury has emerged in their use. A large number of data have shown that abnormal activation of cytosolic DNA-sensing cyclic GMP-AMP synthase-interferon gene activator pathway is closely related to cardiovascular inflammation and autoimmune diseases. However, the pathophysiological function of the cGAS-STING cascade in myocarditis induced by Immune checkpoint inhibitors is unclear.
View Article and Find Full Text PDFPhytomedicine
January 2025
Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. Electronic address:
Background: The Bushen Jiedu Formula (BSJDF) is a traditional and effective chemical prescription of traditional Chinese medicine (TCM) administered due to its anti-cancer properties, particularly in colorectal cancer (CRC).
Purpose: This study proposes to explore the therapeutic benefits of BSJDF against metastasis in CRC and unravel its regulatory mechanisms related to the tumor microenvironment.
Study Design/methods: The combination of mass spectrometry and network pharmacology was used to analyze the involvement of BSJDF in anti-tumor progression.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!