Background: Thermogenic fitness drink formulas (TFD) have been shown to increase energy expenditure and markers of lipid metabolism. The purpose of the current study was to compare TFD formulas containing different caffeine concentrations versus a placebo drink on energy expenditure and lipid metabolism at rest and during exercise.

Methods: Thirty-two recreationally active participants (22.9 ± 0.7 y, 167.1 ± 1.4 cm, 68.8 ± 2.0 kg, 24.0 ± 1.2% fat) who were regular caffeine consumers, participated in this randomized, double-blind, crossover design study. Participants reported to the laboratory on three occasions, each of which required consumption of either a TFD containing 140 mg or 100 mg of caffeine or a placebo. Baseline measurements of resting energy expenditure (REE) and resting fat oxidation (RFO) were assessed using indirect calorimetry as well as measurements of serum glycerol concentration. Measurements were repeated at 30, 60, 90 min post-ingestion. Following resting measures, participants completed a graded exercise test to determine maximal oxygen uptake (V̇O), maximal fat oxidation (MFO) and the exercise intensity that elicits MFO (Fat), and total energy expenditure (EE).

Results: A significant interaction was shown for REE (p < 0.01) and RFO (p < 0.01). Area under the curve analysis showed an increased REE for the 140 mg compared to the 100 mg formula (p = 0.02) and placebo (p < 0.01) and an increased REE for the 100 mg formula compared to placebo (p = 0.02). RFO significantly decreased for caffeinated formulas at 30 min post ingestion compared to placebo and baseline (p < 0.01) and significantly increased for the 140 mg formula at 60 min post-ingestion (p = 0.03). A main effect was shown for serum glycerol concentrations over time (p < 0.01). No significant differences were shown for V̇O (p = 0.12), Fat (p = 0.22), and MFO (p = 0.05), and EE (p = 0.08) across drinks.

Conclusions: Our results suggest that TFD formulas containing 100 and 140 mg of caffeine are effective in increasing REE and that a 40 mg of caffeine difference between the tested formulas may impact REE and RFO in healthy individuals within 60 min of ingestion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020555PMC
http://dx.doi.org/10.1186/s12970-020-0341-4DOI Listing

Publication Analysis

Top Keywords

energy expenditure
20
thermogenic fitness
8
fitness drink
8
drink formulas
8
140 mg 100 mg
8
100 mg caffeine
8
metabolism rest
8
lipid metabolism
8
fat oxidation
8
energy
5

Similar Publications

Constitutive loss of kynurenine-3-monooxygenase changes circulating kynurenine metabolites without affecting systemic energy metabolism.

Am J Physiol Endocrinol Metab

January 2025

Molecular and Cellular Exercise Physiology, Department of physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.

Kynurenic acid (KYNA) and quinolinic acid (QUIN) are metabolites of the kynurenine pathway of tryptophan degradation with opposing biological activities in the central nervous system. In the periphery, KYNA is known to positively affect metabolic health, whereas the effects of QUIN remain less explored. Interestingly, metabolic stressors, including exercise and obesity, differentially change the balance between circulating KYNA and QUIN.

View Article and Find Full Text PDF

Calcium-mediated mitochondrial fission and mitophagy drive glycolysis to facilitate arterivirus proliferation.

PLoS Pathog

January 2025

Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.

Mitochondria, recognized as the "powerhouse" of cells, play a vital role in generating cellular energy through dynamic processes such as fission and fusion. Viruses have evolved mechanisms to hijack mitochondrial function for their survival and proliferation. Here, we report that infection with the swine arterivirus porcine reproductive and respiratory syndrome virus (PRRSV), manipulates mitochondria calcium ions (Ca2+) to induce mitochondrial fission and mitophagy, thereby reprogramming cellular energy metabolism to facilitate its own replication.

View Article and Find Full Text PDF

Ferulic acid (FA) is a phenolic compound obtained naturally and is a versatile antioxidant identified for its potential in managing hypertension. However, its application is constrained due to its classification as a BCS Class IV moiety. To address this, we concentrated on improving its solubility and permeability by developing nanostructured lipid carriers (NLCs) of FA using emulsification probe sonication technique.

View Article and Find Full Text PDF

Decoding the role of ghrelin and its interactions with central signaling pathways in avian appetite regulation.

Vet Res Commun

January 2025

Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

Ghrelin, a peptide hormone primarily produced in the enteroendocrine cells of the gastrointestinal tract, plays a vital role in regulating food intake, and energy balance in avian species. This review examines the complex interactions between ghrelin and the central signaling pathways associated with hunger regulation in birds. In contrast to mammals, where ghrelin typically promotes feeding behavior, its effects in birds appear more nuanced, exhibiting anorexigenic properties under certain conditions.

View Article and Find Full Text PDF

An innovative colorimetric sensing strategy was developed for the detection of glucose by the integration of glucose aptamer, glucose oxidase (GOx), and horseradish peroxidase (HRP), termed aptamer proximal enzyme cascade reactions (APECR). In the presence of glucose, aptamer binding enables GOx to catalyze glucose oxidation into HO efficiently. Subsequently, the adjacent HRP catalyzes the oxidation of the peroxidase substrate, 2,2'-biazobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), utilizing the generated HO, resulting in a distinct color change.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!