A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Continuous Microfluidic Purification of DNA Using Magnetophoresis. | LitMetric

Continuous Microfluidic Purification of DNA Using Magnetophoresis.

Micromachines (Basel)

Shenzhen Research Institute of Southeast University, Shenzhen Virtual University Park, Shenzhen 518000, China.

Published: February 2020

Automatic microfluidic purification of nucleic acid is predictable to reduce the input of original samples and improve the throughput of library preparation for sequencing. Here, we propose a novel microfluidic system using an external NdFeB magnet to isolate DNA from the polymerase chain reaction (PCR) mixture. The DNA was purified and isolated when the DNA-carrying beads transported to the interface of multi-laminar flow under the influence of magnetic field. Prior to the DNA recovery experiments, COMSOL simulations were carried out to study the relationship between trajectory of beads and magnet positions as well as fluid velocities. Afterwards, the experiments to study the influence of varying velocities and input of samples on the DNA recovery were conducted. Compared to experimental results, the relative error of the final position of beads is less than 10%. The recovery efficiency decreases with increase of input or fluid velocity, and the maximum DNA recovery efficiency is 98.4% with input of l00 ng DNA at fluid velocity of 1.373 mm/s. The results show that simulations significantly reduce the time for parameter adjustment in experiments. In addition, this platform uses a basic two-layer chip to realize automatic DNA isolation without any other liquid switch value or magnet controller.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074667PMC
http://dx.doi.org/10.3390/mi11020187DOI Listing

Publication Analysis

Top Keywords

dna recovery
12
microfluidic purification
8
dna
8
recovery efficiency
8
fluid velocity
8
continuous microfluidic
4
purification dna
4
dna magnetophoresis
4
magnetophoresis automatic
4
automatic microfluidic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!