Context-Dependent Gene Regulation by Homeodomain Transcription Factor Complexes Revealed by Shape-Readout Deficient Proteins.

Mol Cell

Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Neuroscience, Columbia University, New York, NY 10027, USA. Electronic address:

Published: April 2020

Eukaryotic transcription factors (TFs) form complexes with various partner proteins to recognize their genomic target sites. Yet, how the DNA sequence determines which TF complex forms at any given site is poorly understood. Here, we demonstrate that high-throughput in vitro DNA binding assays coupled with unbiased computational analysis provide unprecedented insight into how different DNA sequences select distinct compositions and configurations of homeodomain TF complexes. Using inferred knowledge about minor groove width readout, we design targeted protein mutations that destabilize homeodomain binding both in vitro and in vivo in a complex-specific manner. By performing parallel systematic evolution of ligands by exponential enrichment sequencing (SELEX-seq), chromatin immunoprecipitation sequencing (ChIP-seq), RNA sequencing (RNA-seq), and Hi-C assays, we not only classify the majority of in vivo binding events in terms of complex composition but also infer complex-specific functions by perturbing the gene regulatory network controlled by a single complex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7197192PMC
http://dx.doi.org/10.1016/j.molcel.2020.01.027DOI Listing

Publication Analysis

Top Keywords

context-dependent gene
4
gene regulation
4
regulation homeodomain
4
homeodomain transcription
4
transcription factor
4
factor complexes
4
complexes revealed
4
revealed shape-readout
4
shape-readout deficient
4
deficient proteins
4

Similar Publications

Med15 is a general transcriptional regulator and tail module subunit within the RNA Pol II mediator complex. The Med15 protein has a well-structured N-terminal KIX domain, three activator binding domains (ABDs) and several naturally variable polyglutamine (poly-Q) tracts (Q1, Q2, Q3) embedded in an intrinsically disordered central region, and a C-terminal mediator association domain (MAD). We investigated how the presence of ABDs and changes in length and composition of poly-Q tracts influences Med15 activity using phenotypic, gene expression, transcription factor interaction and phase separation assays of truncation, deletion, and synthetic alleles.

View Article and Find Full Text PDF

Cellular plasticity is a hallmark function of cancer, but many of the underlying mechanisms are not well understood. In this study, we identify Caveolin-1, a scaffolding protein that organizes plasma membrane domains, as a context-dependent regulator of survival signaling in Ewing sarcoma (EwS). Single cell analyses reveal a distinct subpopulation of EwS cells, which highly express the surface marker CD99 as well as Caveolin-1.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, with complex etiological factors and a diverse genetic landscape. Among the critical genetic mutations in HCC, the AT-rich interaction domain 1 A (ARID1A) gene, a key component of the SWI/SNF chromatin remodeling complex, stands out due to its significant role in both tumor suppression and oncogenesis. This review comprehensively examines the molecular and pathological impacts of ARID1A mutations in HCC.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is a common metabolic disorder characterized by dysregulation of glucose metabolism. Genome-wide association studies have defined hundreds of signals associated with T2D and related metabolic traits, predominantly in noncoding regions. While pancreatic islets have been a focal point given their central role in insulin production and glucose homeostasis, other metabolic tissues, including liver, adipose, and skeletal muscle, also contribute to T2D pathogenesis and risk.

View Article and Find Full Text PDF

Metaxin-2 tunes mitochondrial transportation and neuronal function in Drosophila.

Genetics

December 2024

Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.

Metaxins are a family of evolutionarily conserved proteins that reside on the mitochondria outer membrane (MOM) and participate in the protein import into the mitochondria. Metaxin-2 (Mtx2), a member of this family, has been identified as a key component in the machinery for mitochondrial transport in both C. elegans and human neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!