Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.16443 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania, 16057, USA.
A polyphasic taxonomic study was carried out on strain T5W1, isolated from the roots of the aquatic plant . This isolate is Gram-negative, rod-shaped, motile, aerobic and non-pigmented. Nearly complete 16S rRNA gene sequence homology related the strain to , with 98.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China.
This study aimed to investigate the impact of nitrogen (N) fertilizer on bacterial community composition and diversity in the rhizosphere and endosphere of rice at different growth stages. Two treatments, N0 (no N application) and N1 (270 kg N ha), were implemented, with samples collected during the jointing, tasseling, and maturity stages. High-throughput sequencing was used to analyze the structure and composition of bacterial communities associated with Huaidao No.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan. Electronic address:
Serpentine soils are characterized by high concentrations of heavy metals (HMs) and limited essential nutrients with remarkable endemic plant diversity, yet the mechanisms enabling plant adaptation to thrive in such harsh environments remain largely unknown. Full-length 16S rRNA amplicon sequencing, coupled with physiological and functional assays, was used to explore root-associated bacterial community composition and their metabolic and ecological functions. The results revealed that serpentine plant species exhibited significantly higher metal transfer factor values compared to non-serpentine plant species, particularly evident in Bidens pilosa, Miscanthus floridulus, and Leucaena leucocephala.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, Turin, 10125, Turin, Italy.
FEMS Microbiol Rev
December 2024
Department of Biology, Stanford University, Stanford CA 94305, USA.
Bacteria and ectomycorrhizal fungi (EcMF) represent two of the most dominant plant root-associated microbial groups on Earth, and their interactions continue to gain recognition as significant factors that shape forest health and resilience. Yet we currently lack a focused review that explains the state of bacteria-EcMF interaction research in the context of experimental approaches and technological advancements. To these ends, we illustrate the utility of studying bacteria-EcMF interactions, detail outstanding questions, outline research priorities in the field, and provide a suite of approaches that can be used to promote experimental reproducibility, field advancement, and collaboration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!