A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Additive effect of contrast and velocity suggests the role of strong excitatory drive in suppression of visual gamma response. | LitMetric

It is commonly acknowledged that gamma-band oscillations arise from interplay between neural excitation and inhibition; however, the neural mechanisms controlling the power of stimulus-induced gamma responses (GR) in the human brain remain poorly understood. A moderate increase in velocity of drifting gratings results in GR power enhancement, while increasing the velocity beyond some 'transition point' leads to GR power attenuation. We tested two alternative explanations for this nonlinear input-output dependency in the GR power. First, the GR power can be maximal at the preferable velocity/temporal frequency of motion-sensitive V1 neurons. This 'velocity tuning' hypothesis predicts that lowering contrast either will not affect the transition point or shift it to a lower velocity. Second, the GR power attenuation at high velocities of visual motion can be caused by changes in excitation/inhibition balance with increasing excitatory drive. Since contrast and velocity both add to excitatory drive, this 'excitatory drive' hypothesis predicts that the 'transition point' for low-contrast gratings would be reached at a higher velocity, as compared to high-contrast gratings. To test these alternatives, we recorded magnetoencephalography during presentation of low (50%) and high (100%) contrast gratings drifting at four velocities. We found that lowering contrast led to a highly reliable shift of the GR suppression transition point to higher velocities, thus supporting the excitatory drive hypothesis. No effects of contrast or velocity were found in the alpha-beta range. The results have implications for understanding the mechanisms of gamma oscillations and developing gamma-based biomarkers of disturbed excitation/inhibition balance in brain disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018047PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0228937PLOS

Publication Analysis

Top Keywords

excitatory drive
16
contrast velocity
12
'transition point'
8
power attenuation
8
hypothesis predicts
8
lowering contrast
8
transition point
8
excitation/inhibition balance
8
velocity
7
power
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!