Microorganisms are ubiquitous in the biosphere, playing a crucial role in both biogeochemistry of the planet and human health. However, identifying these microorganisms and defining their function are challenging. Widely used approaches in comparative metagenomics, 16S amplicon sequencing and whole genome shotgun sequencing (WGS), have provided access to DNA sequencing analysis to identify microorganisms and evaluate diversity and abundance in various environments. However, advances in parallel high-throughput DNA sequencing in the past decade have introduced major hurdles, namely standardization of methods, data storage, reproducible interoperability of results, and data sharing. The National Ecological Observatory Network (NEON), established by the National Science Foundation, enables all researchers to address queries on a regional to continental scale around a variety of environmental challenges and provide high-quality, integrated, and standardized data from field sites across the U.S. As the amount of metagenomic data continues to grow, standardized procedures that allow results across projects to be assessed and compared is becoming increasingly important in the field of metagenomics. We demonstrate the feasibility of using publicly available NEON soil metagenomic sequencing datasets in combination with open access Metagenomics Rapid Annotation using the Subsystem Technology (MG-RAST) server to illustrate advantages of WGS compared to 16S amplicon sequencing. Four WGS and four 16S amplicon sequence datasets, from surface soil samples prepared by NEON investigators, were selected for comparison, using standardized protocols collected at the same locations in Colorado between April-July 2014. The dominant bacterial phyla detected across samples agreed between sequencing methodologies. However, WGS yielded greater microbial resolution, increased accuracy, and allowed identification of more genera of bacteria, archaea, viruses, and eukaryota, and putative functional genes that would have gone undetected using 16S amplicon sequencing. NEON open data will be useful for future studies characterizing and quantifying complex ecological processes associated with changing aquatic and terrestrial ecosystems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018008 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0228899 | PLOS |
J Oral Microbiol
January 2025
State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
Background: Oral microbiome has been associated with various cancers, including nasopharyngeal carcinoma (NPC), but its role in cancer treatment and prognosis remains largely unknown. This study aims to address the dynamic changes in oral microbiome following cancer treatment and their prognostic implications in NPC patients.
Patients And Methods: Unstimulated whole saliva samples were collected from 23 NPC patients before and after treatment, with an average of 2.
Anim Microbiome
January 2025
School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen, AB10 7GJ, UK.
Background: Cryptosporidiosis is a diarrheal disease that commonly affects calves under 6 weeks old. The causative agent, Cryptosporidium parvum, has been associated with the abundance of specific taxa in the faecal microbiome during active infection. However, the long-term impact of these microbiome shifts, and potential effects on calf growth and health have not yet been explored in depth.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
Comprehending the interplay between the microbial communities of bulk soil (BS) and rhizosphere soil (RS) holds crucial significance in maintaining soil health and fertility, as well as enhancing crop quality. Our research focused on examining these microbial communities in BS and RS of Acanthopanax senticosus, along with their correlation with soil nutrients, across three distinct habitats in Yichun, Heilongjiang Province. To achieve this, we employed high-throughput sequencing technology, specifically targeting the 16S and amplicon regions.
View Article and Find Full Text PDFJ Appl Microbiol
January 2025
University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 1627, FI-70211 Kuopio, Finland.
Aims: We investigated the combined effects of pipe materials and disinfection chemicals on bacterial community and its active RNA fraction in water and biofilms in a pilot-scale premise plumbing system.
Methods And Results: The changes in bacterial communities were studied within four pipelines using copper and cross-linked polyethylene (PEX) pipe with chlorine or chloramine disinfection. The total and active bacterial communities and the presence of opportunistic pathogens (Legionella spp.
Bioresour Technol
January 2025
Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China. Electronic address:
Composting organic waste is a sustainable recycling method in agricultural systems, yet the microbial preferences for different substrates and their influence on composting efficiency remain underexplored. Here, 210 datasets of published 16S ribosomal DNA amplicon sequences from straw and manure composts worldwide were analyzed, and a database of 278 bacterial isolates was compiled. Substrate-driven microbiome variations were most prominent during the initial composting stages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!