Tissue fibrosis is a pathological condition characterized by uncontrolled fibroblast activation that ultimately leads to organ failure. The TGFβ1 pathway, one of the major players in establishment of the disease phenotype, is dependent on the transcriptional co-activators YAP/TAZ. We were interested whether fibroblasts can be sensitized to TGFβ1 by activation of the GPCR/YAP/TAZ axis and whether this mechanism explains the profibrotic properties of diverse GPCR ligands. We found that LPA, S1P and thrombin cooperate in human dermal fibroblasts with TGFβ1 to induce extracellular matrix synthesis, myofibroblast marker expression and cytokine secretion. Whole genome expression profiling identified a YAP/TAZ signature behind the synergistic profibrotic effects of LPA and TGFβ1. LPA, S1P and thrombin stimulation led to activation of the Rho-YAP axis, an increase of nuclear YAP-Smad2 complexes and enhanced expression of profibrotic YAP/Smad2-target genes. More generally, dermal, cardiac and lung fibroblast responses to TGFβ1 could be enhanced by increasing YAP nuclear levels (with GPCR ligands LPA, S1P, thrombin or Rho activator) and inhibited by decreasing nuclear YAP (with Rho inhibitor, forskolin, latrunculin B or 2-deoxy-glucose). Thus, we present here a conceptually interesting finding that fibroblast responses to TGFβ1 can be predicted based on the nuclear levels of YAP and modulated by stimuli/treatments that change YAP nuclear levels. Our study contributes to better understanding of fibrosis as a complex interplay of signalling pathways and proposes YAP/TAZ as promising targets in the treatment of fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018035PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0228195PLOS

Publication Analysis

Top Keywords

lpa s1p
12
s1p thrombin
12
nuclear levels
12
gpcr ligands
8
ligands lpa
8
fibroblast responses
8
responses tgfβ1
8
yap nuclear
8
tgfβ1
7
nuclear
5

Similar Publications

Structural insights into the engagement of lysophosphatidic acid receptor 1 with different G proteins.

J Struct Biol

December 2024

Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima Bunkyo-ku 113-8510, Tokyo, Japan. Electronic address:

Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are bioactive lysophospholipids derived from cell membranes that activate the endothelial differentiation gene family of G protein-coupled receptors. Activation of these receptors triggers multiple downstream signaling cascades through G proteins such as Gi/o, Gq/11, and G12/13. Therefore, LPA and S1P mediate several physiological processes, including cytoskeletal dynamics, neurite retraction, cell migration, cell proliferation, and intracellular ion fluxes.

View Article and Find Full Text PDF

Lysophospholipid receptors in neurodegeneration and neuroprotection.

Explor Neuroprotective Ther

August 2024

Department of Biology, Winthrop University, Rock Hill, SC 29733, USA.

The central nervous system (CNS) is one of the most complex physiological systems, and treatment of CNS disorders represents an area of major medical need. One critical aspect of the CNS is its lack of regeneration, such that damage is often permanent. The damage often leads to neurodegeneration, and so strategies for neuroprotection could lead to major medical advances.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are bioactive phospholipids that act as mitogens in various cancers. Both LPA and S1P activate G-protein coupled receptors (GPCRs). We examined the role of CCN1/CYR61, an inducible matricellular protein, in LPA-induced signal transduction in PC-3 human prostate cancer cells.

View Article and Find Full Text PDF

Identification of the primary ciliary proteins IFT38 and IFT144 to enhance serum-mediated YAP activation and cell proliferation.

Biochem Biophys Res Commun

November 2023

College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Primary cilia are essential cellular antennae that transmit external signals into intracellular responses. These sensory organelles perform crucial tasks in triggering intracellular signaling pathways, including those initiated by G protein-coupled receptors (GPCRs). Given the involvement of GPCRs in serum-induced signaling, we investigated the contribution of ciliary proteins in mitogen perception and cell proliferation.

View Article and Find Full Text PDF

Lysophospholipids and their producing enzymes: Their pathological roles and potential as pathological biomarkers.

Pharmacol Ther

June 2023

Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan. Electronic address:

Accumulating evidence suggests that lysophospholipids (LPL) serve as lipid mediators that exert their diverse pathophysiological functions via G protein-coupled receptors. These include lysophosphatidic acid (LPA), sphingosine 1-phosphate (S1P), lysophosphatidylserine (LysoPS) and lysophosphatidylinositol (LPI). Unlike S1P, which is produced intracellularly and secreted from various cell types, some LPLs, such as LPA, LysoPS and LPI, are produced in lesions, especially under pathological conditions, where they positively or negatively regulate disease progression through their autacoid-like actions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!