Aqueous organic redox flow batteries (RFBs) could enable widespread integration of renewable energy, but only if costs are sufficiently low. Because the levelized cost of storage for an RFB is a function of electrolyte lifetime, understanding and improving the chemical stability of active reactants in RFBs is a critical research challenge. We review known or hypothesized molecular decomposition mechanisms for all five classes of aqueous redox-active organics and organometallics for which cycling lifetime results have been reported: quinones, viologens, aza-aromatics, iron coordination complexes, and nitroxide radicals. We collect, analyze, and compare capacity fade rates from all aqueous organic electrolytes that have been utilized in the capacity-limiting side of flow or hybrid flow/nonflow cells, noting also their redox potentials and demonstrated concentrations of transferrable electrons. We categorize capacity fade rates as being "high" (>1%/day), "moderate" (0.1-1%/day), "low" (0.02-0.1%/day), and "extremely low" (≤0.02%/day) and discuss the degree to which the fade rates have been linked to decomposition mechanisms. Capacity fade is observed to be time-denominated rather than cycle-denominated, with a temporal rate that can depend on molecular concentrations and electrolyte state of charge through, e.g., bimolecular decomposition mechanisms. We then review measurement methods for capacity fade rate and find that simple galvanostatic charge-discharge cycling is inadequate for assessing capacity fade when fade rates are low or extremely low and recommend refining methods to include potential holds for accurately assessing molecular lifetimes under such circumstances. We consider separately symmetric cell cycling results, the interpretation of which is simplified by the absence of a different counter-electrolyte. We point out the chemistries with low or extremely low established fade rates that also exhibit open circuit potentials of 1.0 V or higher and transferrable electron concentrations of 1.0 M or higher, which are promising performance characteristics for RFB commercialization. We point out important directions for future research.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrev.9b00599DOI Listing

Publication Analysis

Top Keywords

capacity fade
20
fade rates
20
aqueous organic
12
decomposition mechanisms
12
electrolyte lifetime
8
organic redox
8
redox flow
8
flow batteries
8
fade
8
low extremely
8

Similar Publications

Well-designed structures of the electrocatalyst provide excellent catalytic activity and high structural stability during the sulfur reduction reaction of Lithium-sulfur batteries (LSBs). In this study, a novel and efficient structure is developed to encapsulate bimetallic FeCo nanoalloy catalysts within N-doped carbon nanotube (NCNT) on carbon nanofibers (FeCo@NCNT/CNFs) using a combination of electrospinning and rapid-cooling techniques. The NCNT matrix with abundant sites not only serves as a high pathway for electron transport during the reaction, but its encapsulation structure also acts as armor to protect the FeCo nanoalloy.

View Article and Find Full Text PDF

The existing body of research on battery state of health has identified various degradation modes for the electrolyte, yet very few studies have explored the role of electrolyte colour changes as a diagnostic tool for state of health (SOH). This study investigates the impact of elevated temperatures and its correlation with electrolyte colour changes and capacity fade during cycling. Specifically, the research examines whether cycling cells at elevated temperatures induces noticeable changes in electrolyte colour and whether these changes can be linked to the SOH of the cells.

View Article and Find Full Text PDF

Increasing the upper cut-off voltage (UCV) enhances the specific energy of Li-ion batteries (LIBs), but is accompanied by higher capacity fade as a result of electrode cross-talk, i.e., transition metals (TM) dissolution from cathode and deposition on anode, finally triggering high surface area lithium (HSAL) formation due to locally enhanced resistance.

View Article and Find Full Text PDF

Polythiophene side chain chemistry and its impact on advanced composite anodes for lithium-ion batteries.

Chem Commun (Camb)

December 2024

Department of Chemical and Bimolecular Engineering, Lehigh University, Bethlehem, PA, 18015, USA.

In the development of high-performance lithium-ion batteries (LIBs), the design of polymer binders, particularly through manipulation of side-chain chemistry, plays a pivotal role in optimizing electrode stability, ion transport, and adaptability to the volume changes during cycling. In particular, poly[3-(potassium-4-butanoate)thiophene-2,5-diyl] (P3KBT) increases magnetite and silicon capacity and cycling stability. This work explores the impact of polythiophene alkyl sidechain length on anode characteristics, aiming to enhance performance in LIBs.

View Article and Find Full Text PDF

FTIR Spectroscopy Study on Rapid Polysulfide Binding via Caffeine in Lithium-Sulfur Batteries.

J Phys Chem Lett

December 2024

Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.

Lithium-sulfur batteries are limited by the high mobility of polysulfides in the electrolyte, which allows them to migrate from the cathode to the lithium anode. This is known as polysulfide shuttling and simultaneously diminishes the active material and poisons the anode. Various cathode additives have been shown empirically to mitigate this problem, although the mechanism is not often ascertained experimentally.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!