Unlike supramolecular self-assembly methods that can organize many distinct components into designer shapes in a homogeneous solution (e.g., DNA origami), only relatively simple, symmetric structures consisting of a few distinct components have been self-assembled at solid surfaces. As the self-assembly process is confined to the surface/interface by mostly nonspecific attractive interactions, an open question is how these interfacial interactions affect multicomponent self-assembly. To gain a mechanistic understanding of the roles of the surface environment in DNA origami self-assembly, here we studied the oligonucleotide-assisted folding of a long single-stranded DNA (ssDNA scaffold) that was end-tethered to a dynamic surface, which could actively regulate the DNA-surface interactions. The results showed that even weak surface attractions can lead to defective structures by inhibiting the merging of multiple domains into complete structures. A combination of surface anchoring and deliberate regulation of DNA-surface interactions allowed us to depart from the existing paradigm of surface confinement via nonspecific interactions and enabled DNA origami folding to proceed in a solution-like environment. Importantly, our strategy retains the key advantages of surface-mediated self-assembly. For example, surface-anchored oligonucleotides could sequence-specifically initiate the growth of DNA origamis of specific sizes and shapes. Our work enables information to be encoded into a surface and expressed into complex DNA surface architectures for potential nanoelectronic and nanophotonic applications. In addition, our approach to surface confinement may facilitate the 2D self-assembly of other molecular components, such as proteins, as maintaining conformational freedom may be a general challenge in the self-assembly of complex structures at surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.9b09348 | DOI Listing |
ACS Cent Sci
December 2024
Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, China, 100871.
ACS Cent Sci
December 2024
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
DNA computing leverages molecular reactions to achieve diverse information processing functions. Recently developed DNA origami registers, which could be integrated with DNA computing circuits, allow signal transmission between these circuits, enabling DNA circuits to perform complex tasks in a sequential manner, thereby enhancing the programming space and compatibility with various biomolecules of DNA computing. However, these registers support only single-write operations, and the signal transfer involves cumbersome and time-consuming register movements, limiting the speed of sequential computing.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
Angew Chem Int Ed Engl
December 2024
Nanjing University, Department of Biomedical Engineering, CHINA.
Biological systems utilize precise spatial organization to facilitate and regulate information transmission within signaling networks. Inspired by this, artificial scaffolds that enable delicate spatial arrangements are desirable to increase the local concentration of reactants, expedite specific interactions, and minimize undesired interference. In this study, we presented an integrated biosensing nanodevice, termed TRI-HCR, in which hybridization chain reaction (HCR) probes were precisely organized on a triangular DNA origami nanostructure (TRI) with finely-tuned distance, quantity, and pattern.
View Article and Find Full Text PDFAnal Methods
December 2024
Troy High School, 2200 Dorothy Ln, Fullerton, CA 92831, USA.
This paper explores how DNA nanotechnology enhances biosensors in medicine and pharmacology by taking advantage of the unique characteristics of DNA and the unique advantages of DNA origami technology. DNA origami allows the establishment of complex nanoobjects with precise size and complete molecular writability as well as the possibility of seamless integration and biocompatibility with biological systems. Utilizing this, the chemical denaturation of DNA chains allows for the combination of various functions, including organic fluorescence groups and photoreaction elements, This has allowed DNA origami to become a transformative tool in biotechnology and other fields because of its versatility, use in innovative applications improving the design and function of biosensors, and potential to provide greater possibilities for early disease diagnosis and personalized medicine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!