Organic color-center quantum defects in semiconducting carbon nanotube hosts are rapidly emerging as promising candidates for solid-state quantum information technologies. However, it is unclear whether these defect color-centers could support the spin or pseudospin-dependent excitonic fine structure required for spin manipulation and readout. Here we conducted magneto-photoluminescence spectroscopy on individual organic color-centers and observed the emergence of fine structure states under an 8.5 T magnetic field applied parallel to the nanotube axis. One to five fine structure states emerge depending on the chirality of the nanotube host, nature of chemical functional group, and chemical binding configuration, presenting an exciting opportunity toward developing chemical control of magnetic brightening. We attribute these hidden excitonic fine structure states to field-induced mixing of singlet excitons trapped at sp defects and delocalized band-edge triplet excitons. These findings provide opportunities for using organic color-centers for spintronics, spin-based quantum computing, and quantum sensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.9b09548 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!