Laboratory automation strategies have vast potential for accelerating discovery processes. They enable higher efficiency and throughput for time-consuming screening procedures and reduce error-prone manual steps. Automating repetitive procedures can for instance support chemists in optimizing chemical reactions. Particularly, the technology of DNA-encoded libraries (DELs) may benefit from automation techniques, since translation of chemical reactions to DNA-tagged reactants often requires screening of multiple reaction parameters and evaluation of large numbers of reactants. Here, we describe a portable, automated system for reagent dispensing that was designed from open source materials. The system was validated by performing amide coupling of carboxylic acids to DNA-linked amine and a micelle-mediated Povarov reaction to DNA-tagged hexahydropyrroloquinolines. The latter reaction required accurate pipetting of multiple components including different solvents and a surface-active reagent. Analysis of reactions demonstrated that the robotic system achieved high accuracy comparable to experimentation by an experienced chemist with the potential of higher throughput.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acscombsci.9b00207DOI Listing

Publication Analysis

Top Keywords

chemical reactions
8
design automated
4
automated reagent-dispensing
4
system
4
reagent-dispensing system
4
reaction
4
system reaction
4
reaction screening
4
screening validation
4
validation dna-tagged
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!