Atherosclerosis is one of the most common and crucial heart diseases involving the heart and brain. At present, atherosclerosis and its major complications comprise the leading causes of death worldwide. Our purpose was to identify the role of ciRS-7 in atherosclerosis. Tubulogenesis of HMEC-1 cell was evaluated utilizing tube formation assay. Cell Counting Kit-8 assay and flow cytometry were utilized to test viability and apoptosis. Migration assay was utilized to determine the migration capacity of experimental cells. Western blot was applied to examine apoptosis and tube formation-associated protein expression. In addition, the above experiments were repeated when silencing ciRS-7, overexpressing ciRS-7, and upregulating miR-26a-5p. HMEC-1 cells formed tube-like structures over time. Silencing ciRS-7 suppressed viability, migration, and tube formation but promoted apoptosis. Oppositely, overexpressing ciRS-7 reversed the effect in HMEC-1 cells. miR-26a-5p expression was elevated by silencing ciRS-7 and reduced by overexpressing ciRS-7. Moreover, overexpressing ciRS-7 facilitated viability, migration, and tube formation via upregulating miR-26a-5p. Conclusively, overexpressing ciRS-7 mobilized phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway and suppressed c-Jun N-terminal kinase (JNK)/p38 pathway. ciRS-7 exerted influence on apoptosis, viability, migration, and tube formation through mediating PI3K/AKT and JNK/p38 pathways by miR-26a-5p downregulation in HMEC-1 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbt.22468DOI Listing

Publication Analysis

Top Keywords

tube formation
20
overexpressing cirs-7
20
silencing cirs-7
12
hmec-1 cells
12
viability migration
12
migration tube
12
cirs-7
11
cirs-7 overexpressing
8
upregulating mir-26a-5p
8
tube
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!