Spatial confinement is a desirable successful strategy to trap sulfur within its porous host and has been widely applied in lithium-sulfur (Li-S) batteries. However, physical confinement alone is currently not enough to reduce the lithium polysulfide (LiS, 4 ≤n≤ 8, LIPSs) shuttle effect with sluggish LIPS-dissolving kinetics. In this work, we have integrated spatial confinement with a polar catalyst, and designed a three-dimensional (3D) interconnected, Co decorated and N doped porous carbon nanofiber (Co/N-PCNF) network. This Co/N-PCNF film serves as a freestanding host for sulfur trapping, which could effectively facilitate the infiltration of electrolyte and electron transport. In addition, the polar Co species possess strong chemisorption with LIPSs, catalyzing their reaction kinetics as well. As a result of this rational design and integration, the Co/N-PCNF@S cathode with a sulfur loading of 2 mg cm exhibits a high initial discharge capacity of 878 mA h g at 1C, and maintains a discharge capacity of 728 mA h g after 200 cycles. Even with high sulfur loading of 9.33 mg cm, the cathode still keeps a stable areal capacity of 7.16 mA h cm at 0.2C after 100 cycles, which is much higher than the current areal capacity (4 mA h cm) of commercialized lithium-ion batteries (LIBs). This rational design may provide a new approach for future development of high-density Li-S batteries with high sulfur loading.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9nh00663j | DOI Listing |
Molecules
December 2024
Shanxi Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
Lithium-sulfur (Li-S) batteries have emerged as a promising candidate for next-generation high-energy rechargeable lithium batteries, but their practical application is impeded by the sluggish redox kinetics and low sulfur loading. Here, we report the in situ growth of δ-MnO nanosheets onto hierarchical porous carbon microspheres (HPCs) to form an HPCs/S@MnO composite for advanced lithium-sulfur batteries. The delicately designed hybrid architecture can effectively confine LiPSs and obtain high sulfur loading up to 10 mg cm, in which the inner carbon microspheres with a large pore volume and large specific surface area can encapsulate high sulfur content, and the outer MnO nanosheets, as a catalytic layer, can improve the conversion reaction of LiPSs and suppress the shuttle effect.
View Article and Find Full Text PDFFoods
December 2024
Research Group on Biomass Energy, Department of Nuclear Energy, Federal University of Pernambuco, Recife 50740-545, PE, Brazil.
Food waste (FW) is a common source of contamination, contaminating both soils and water bodies by releasing greenhouse gases. FW holds great potential for biofuel and bioproduct production, which can mitigate its environmental impact and become a valuable addition to the circular bioeconomy. Therefore, this work aimed to investigate the use of food waste as a substrate to produce fermentable sugars and bioethanol.
View Article and Find Full Text PDFTalanta
December 2024
Faculty of Chemistry, University of Mazandaran, Babolsar, Iran. Electronic address:
Preparation of carbon dots (CDs) from biomass waste is of great interest due to its low cost synthesis, environmental compatibility and functionalization without adding dangerous chemicals. Herein, S-doped carbon dot (SCD) was synthesized using agricultural waste as carbon precursors and modified in-situ with rhodamine B dye (SCD@RHB) to construct efficient flouresent probe. SCD@RHB was loaded into HKUST-1 metal-organic framework (SCD@RHB/HKUST-1) and the probe was employed as ratiometric flouresent (RF) sensor for the determination of ciprofloxacin (CIP) antibiotic in trace level.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
Biofilm-induced chronic bacterial infections represent a significant challenge in modern medicine due to their resistance to conventional antibiotic treatments. Although photodynamic therapy (PDT) has emerged as a promising antibiotic-free antibacterial strategy, the hypoxic condition within biofilms and the lack of an effective local drug delivery system have limited the clinical effectiveness of photosensitizer (PS) agents. Herein, we propose a type of charge regulation-enhanced type I PS-loaded hydrogel dressing for treating biofilm infection.
View Article and Find Full Text PDFSci Total Environ
January 2025
Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avda. Padre Hurtado 750, Viña del Mar, Chile.
Nitrogen contamination of water sources poses significant environmental and health risks. The sulfur-driven simultaneous nitrification and autotrophic denitrification (SNAD) process offers a cost-effective solution, as it operates in a single reactor, requires no organic carbon addition, and produces minimal sludge. However, this process remains underexplored, with microbial population dynamics, their interactions, and their implications for process efficiency not yet fully understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!