Diabetes is a metabolic disorder that damages many organs. We investigated the effects of reperfusion using lactate Ringer's solution (LR) in a diabetic animal model. Eight-week-old rats were divided into groups: control, hemorrhagic shock induced (HS), diabetes mellitus (DM), DM plus HS (DM + HS) and DM rats that received LR after HS (DM + HS + LR). HS was induced by withdrawing blood from the femoral artery and arterial pressure was maintained at 40 mm Hg for 1 h. Animals were perfused with either withdrawn blood or LR. Rats were sacrificed and hearts were collected from all groups. Histopathological studies were performed using left ventricles and western blotting analysis was performed using protein extracted from the left ventricle. Using the TUNEL assay, we found more apoptotic cells in the DM + HS group compared to the control group, whereas in animals resuscitated with LR, the number of apoptotic cells was reduced. Western blotting showed a significant reduction in apoptotic markers, cyt , cas 9 and cas 3, and increased survival markers, pPI3K and pAKT, in the DM + HS + LR group. Reperfusion with LR may have therapeutic effects on trauma induced HS by blocking the IGF II R facilitated apoptosis pathway in diabetic rats.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10520295.2019.1651397DOI Listing

Publication Analysis

Top Keywords

reperfusion lactate
8
lactate ringer's
8
hemorrhagic shock
8
diabetic rats
8
western blotting
8
apoptotic cells
8
rats
5
ringer's mixture
4
mixture partially
4
partially eliminates
4

Similar Publications

Remote ischemic preconditioning (RIPC) is reported to have early-phase and delayed-phase organ-protective effects. Previous studies have focused on the organ protection of a single RIPC protocol, and the clinical outcomes remain uncertain. Whether the modified RIPC (mRIPC) protocol performed repeatedly provides cardiopulmonary protection is still uncertain.

View Article and Find Full Text PDF

Hemorrhagic shock is a significant cause of trauma-related mortality. Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a less-invasive aortic occlusion maneuver for severe hemorrhagic shock but potentially inducing oxidative stress injuries. In an animal model, this study investigated hydrogen gas inhalation therapy's potential to mitigate post-REBOA ischemia-reperfusion injuries (IRIs).

View Article and Find Full Text PDF

Currently, the barrier to successful lung transplantation is ischemia and reperfusion injury, which can lead to the development of bronchiolitis obliterans. Paclitaxel and methotrexate are drugs known to inhibit cell proliferation and have anti-inflammatory effects, and the association of these drugs with cholesterol-rich nanoparticles has been shown to be beneficial in the treatment of other transplanted organs. Thirty-three male Sprague Dawley rats were divided into 3 groups: Basal group, no intervention; Control group, received only nanoparticles; Drug group, paclitaxel and methotrexate treatment.

View Article and Find Full Text PDF

Background: Ischemic stroke (IS) is the leading cause of mortality worldwide. Herein, we aimed to identify novel biomarkers and explore the role of C-type lectin domain family 7 member A () in IS.

Methods: Differentially expressed genes (DEGs) were screened using the GSE106680, GSE97537, and GSE61616 datasets, and hub genes were identified through construction of protein-protein interaction networks.

View Article and Find Full Text PDF

Background: Acute ischemia in the hind extremities is a dangerous disease that causes irreversible damage. Revascularization procedures are important to prevent muscle damage, but these treatments may induce additional damage, also known as ischemia-reperfusion injury. The role of free radicals as pivotal mediators of ischemia-reperfusion injury remains a prominent hypothesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!