Background: Gastrodia elata is a fully mycoheterotrophic orchid and has long been used in traditional Chinese medicine. The life cycle of G. elata requires an association with two different fungi-Mycena for seed germination and Armillaria for tuber growth. The association with Armillaria is representative of the phytophagous type of orchid mycorrhiza: the intracellular hyphae are lysed without forming condensed pelotons. However, whether the association with Mycena during seed germination belongs to the same type of orchid mycorrhiza is unknown.
Results: Histological and ultrastructural studies revealed several notable features in different developmental stages. First, a thickened cell wall with papillae-like structures appeared during fungal penetration in the suspensor end cell, epidermal cells and cortical cells of germinating embryos. In addition, the formation of two distinctive cell types in the colonized region of a protocorm (i.e., the passage canal cell filled with actively growing fungal hyphae) can be observed in the epidermal cell, and the distinctive digestion cell with a dense cytoplasm appears in the cortex. Finally, within the digestion cell, numerous electron-dense tubules form a radial system and attach to degrading fungal hyphae. The fungal hyphae appear to be digested through endocytosis.
Conclusions: The present study provides important structural evidence for the phytophagous type of orchid mycorrhiza in the symbiotic germination of G. elata with Mycena. This case demonstrates a particular nutrient transfer network between G. elata and its litter-decaying fungal partner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016048 | PMC |
http://dx.doi.org/10.1186/s40529-019-0280-z | DOI Listing |
Plant Cell Environ
January 2025
Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India.
Tonoplast intrinsic proteins (TIPs) are the channel-forming proteins predominantly found in the tonoplast of plant cells. Despite the identification of TIPs in numerous plant species, very less is known about the precise role of different TIP subgroups. In the present study, two genes belonging to the TIP3 subgroup were studied to understand tissue-specific role and solute transport activity.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye. Electronic address:
Salinization is a significant global issue causes irreversible damage to plants by reducing osmotic potential, inhibiting seed germination, and impeding water uptake. Seed germination, a crucial step towards the seedling stage is regulated by several hormones and genes, with the balance between abscisic acid and gibberellin being the key mechanism that either promotes or inhibits this process. Additionally, mucilage, a gelatinous substance, is known to provide protection against drought, herbivory, soil adhesion, and seed sinking.
View Article and Find Full Text PDFPlant Mol Biol
January 2025
Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
Z. armatum is an economically valued crop known for its rich aroma and medicinal properties. This study identified 45 members of the SQUAMOSA-PROMOTER BINDING PROTEIN LIKE (SPL) gene family in the genome of Z.
View Article and Find Full Text PDFFront Microbiol
January 2025
National Bureau of Agriculturally Important Microorganism, Mau, India.
Non-halophytic plants are highly susceptible to salt stress, but numerous studies have shown that halo-tolerant microorganisms can alleviate this stress by producing phytohormones and enhancing nutrient availability. This study aimed to identify and evaluate native microbial communities from salt-affected regions to boost black gram () resilience against salinity, while improving plant growth, nitrogen uptake, and nodulation in saline environments. Six soil samples were collected from a salt-affected region in eastern Uttar Pradesh, revealing high electrical conductivity (EC) and pH, along with low nutrient availability.
View Article and Find Full Text PDFThe current investigation focuses on synthesizing Ag-Fe bimetallic nanoparticles (AgFe-BMNPs) using cell-free filtrates of the as a novel fungal reducing agent. The optical, morphological, and surface properties of these fungus-fabricated AgFe-BMNPs and their monometallic counterparts (AgNPs and FeNPs) were analyzed using sophisticated nanotechnology instruments. The UV-visible spectrum showed peaks at 231 nm and 415 nm for BMNPs and 450 nm and 386 nm for AgNPs and FeNPs, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!