Femtosecond pulses of light in the vacuum ultraviolet (VUV) spectral region permit extended observation of non-adiabatic dynamics in gas-phase molecules. When used as a probe in time-resolved photoelectron spectroscopy, such pulses project deeply into the ionization continuum and allow the evolution of excited state population to be monitored across multiple potential energy surfaces. When compared with longer-wavelength probes, this often provides a more complete view along the reaction coordinate(s) connecting photoreactants to photoproducts. Here we report the use of 160 nm VUV light to interrogate the excited state dynamics operating in acetylacetone following 267 nm excitation. Multiple non-adiabatic processes (internal conversion and intersystem crossing) were observed on timescales ranging from a few femtoseconds to hundreds of picoseconds. Our quantitative results are in excellent agreement with earlier studies that individually sampled smaller sub-sections of the total reaction coordinate. Furthermore, we also observe additional dynamical signatures not previously reported elsewhere. Overall, our findings provide a good illustration of the need to use short-wavelength VUV probes to obtain the most comprehensive picture possible in photoionization-based studies of photochemical dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp00068j | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Public Health, Xinjiang Medical University, Urumqi 830054, China.
Alveolar echinococcosis (AE) is a serious parasitic infectious disease that is highly invasive and destructive to the liver and has a high mortality rate. However, currently, there is no effective targeted imaging and treatment method for the precise detection and therapy of AE. We proposed a new two-step targeting strategy (TSTS) for AE based on poly(lactic--glycolic acid) (PLGA).
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
High-level multireference configuration interaction plus Davidson correction (MRCI + Q) calculation method was employed to determine the potential energy curves (PECs) of 10 Λ-S states, which come from the first and second dissociation channels of the SbP molecule, as well as 34 Ω states considering the spin-orbit coupling (SOC) effect. By solving the Schrödinger equation for nuclear motion, spectroscopic constants for the ground state XΣ and low-lying excited states were obtained and compared with experimental data. The excellent agreement indicates the reliability of our calculations.
View Article and Find Full Text PDFInorg Chem
January 2025
Institute for Inorganic Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Paderborn 33098, Germany.
A series of Co complexes [Co(ImP)][PF], with HImP = 1,1'-(1,3-phenylene)bis(3-methyl-1-imidazole-2-ylidene)) and R = Me, Et, Pr, Bu, is presented in this work. The influence of the strong donor ligand on the ground and excited-state photophysical properties was investigated in the context of different alkyl substituents at the imidazole nitrogen. X-ray diffraction revealed no significant alterations of the structures and all differences in the series emerge from the electronic structures.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, USA.
This study investigates the impact of structural isomerism on the excited state lifetime and redox energetics of heteroleptic [Ir(ppy)2(bpy)]+ and homoleptic Ir(ppy)3 photoredox catalysts using ground-state and time-dependent density functional theory methods. While the ground- and excited-state reduction potentials differ only slightly among the isomers of these complexes, our findings reveal significant variations in the radiative and non-radiative decay rates of the reactivity-controlling triplet 3MLCT states of these closely related species. The observed differences in radiative decay rates could be traced back to variations in the transition dipole moment, vertical energy gaps, and spin-orbit coupling of the isomers.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States.
The photocatalytic efficiency of materials such as graphene and noble metal nanoclusters depends on their plasmon lifetimes. Plasmon dephasing and decay in these materials is thought to occur on ultrafast time scales, ranging from a few femtoseconds to hundreds of femtoseconds and longer. Here we focus on understanding the dephasing and decay pathways of excited states in small lithium and silver clusters and in plasmonic states of the π-conjugated molecule anthracene, providing insights that are crucial for interpreting optical properties and photophysics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!