Induced pluripotent stem cells (iPSCs) from patients with genetic disorders are a valuable source for in vitro disease models, which enable drug testing and validation of gene and cell therapies. We generated iPSCs from a severe congenital neutropenia (SCN) patient, who presented with a nonsense mutation in the glucose-6-phosphatase catalytic subunit 3 (G6PC3) gene causing profound defects in granulopoiesis, associated with increased susceptibility of neutrophils to apoptosis. Generated SCN iPSC clones exhibited the capacity to differentiate into hematopoietic cells of the myeloid lineage and we identified two cytokine conditions, i.e., using granulocyte-colony stimulating factor or granulocyte-macrophage colony stimulating factor in combination with interleukin-3, to model the SCN phenotype in vitro. Reduced numbers of granulocytes were produced by SCN iPSCs compared with control iPSCs in both settings, which reflected the phenotype in patients. Interestingly, our model showed increased monocyte/macrophage production from the SCN iPSCs. Most importantly, lentiviral genetic correction of SCN iPSCs with a codon-optimized G6PC3 transgene restored granulopoiesis and reduced apoptosis of in vitro differentiated myeloid cells. Moreover, addition of vitamin B3 clearly induced granulocytic differentiation of SCN iPSCs and increased the number of neutrophils to levels comparable with those obtained from healthy control iPSCs. In summary, we established an iPSC-derived in vitro disease model, which will serve as a tool to test the potency of alternative treatment options for SCN patients, such as small molecules and gene therapeutic vectors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41434-020-0127-y | DOI Listing |
J Clin Invest
November 2024
Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Severe congenital neutropenia (SCN) is frequently associated with dominant point mutations in ELANE, the gene encoding neutrophil elastase (NE). Chronic administration of granulocyte colony-stimulating factor (G-CSF) is a first-line treatment of ELANE-mutant (ELANEmut) SCN. However, some ELANEmut patients, including patients with ELANE start codon mutations, do not respond to G-CSF.
View Article and Find Full Text PDFSmall
November 2024
Laboratory of Advanced Materials & Photovoltaics (LAMPs), Necmettin Erbakan University, Konya, 42090, Turkey.
This study delves into the innovative approach of enhancing the efficiency and stability of all-inorganic perovskite solar cells (I-PSCs) through the strategic incorporation of thiocyanate (SCN) ions via pseudohalide-based ionic liquid (IL) configurations. This straightforward methodology has exhibited captivating advancements in the kinetics of crystallization as well as the optoelectronic characteristics of the resulting perovskite films. These developments hold the promise of enhancing not only the quality and uniformity of the films but also aspects such as band alignment and the efficacy of charge transfer mechanisms.
View Article and Find Full Text PDFStem Cell Res Ther
April 2024
Institute of Neurophysiology, Uniklinik RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
J Biol Rhythms
December 2021
Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico.
The suprachiasmatic nucleus (SCN) of the hypothalamus is the brain structure that controls circadian rhythms in mammals. The SCN is formed by two neuroanatomical regions: the ventral and dorsal. Gamma-aminobutyric acid (GABA) neurotransmission is important for the regulation of circadian rhythms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!