Fingerprinting of Doppler audio signals from the common carotid artery.

Sci Rep

Department of Veterinary Clinical Sciences, University of Copenhagen, Dyrlægevej 16, DK-1870, Frederiksberg C, Denmark.

Published: February 2020

Audio fingerprinting involves extraction of quantitative frequency descriptors that can be used for indexing, search and retrieval of audio signals in sound recognition software. We propose a similar approach with medical ultrasonographic Doppler audio signals. Power Doppler periodograms were generated from 84 ultrasonographic Doppler signals from the common carotid arteries in 22 dogs. Frequency features were extracted from each periodogram and included in a principal component analysis (PCA). From this 10 audio samples were pairwise classified as being either similar or dissimilar. These pairings were compared to a similar classification based on standard quantitative parameters used in medical ultrasound and to classification performed by a panel of listeners. The ranking of sound files according to degree of similarity differed between the frequency and conventional classification methods. The panel of listeners had an 88% agreement with the classification based on quantitative frequency features. These findings were significantly different from the score expected by chance (p < 0.001). The results indicate that the proposed frequency based classification has a perceptual relevance for human listeners and that the method is feasible. Audio fingerprinting of medical Doppler signals is potentially useful for indexing and search for similar and dissimilar audio samples in a dataset.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015996PMC
http://dx.doi.org/10.1038/s41598-020-59274-yDOI Listing

Publication Analysis

Top Keywords

audio signals
12
doppler audio
8
signals common
8
common carotid
8
quantitative frequency
8
ultrasonographic doppler
8
frequency features
8
classification based
8
panel listeners
8
audio
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!