A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analysis of Yeast Killer Toxin K1 Precursor Processing via Site-Directed Mutagenesis: Implications for Toxicity and Immunity. | LitMetric

K1 represents a heterodimeric A/B toxin secreted by virus-infected strains. In a two-staged receptor-mediated process, the ionophoric activity of K1 leads to an uncontrolled influx of protons, culminating in the breakdown of the cellular transmembrane potential of sensitive cells. K1 killer yeast necessitate not only an immunity mechanism saving the toxin-producing cell from its own toxin but, additionally, a molecular system inactivating the toxic α subunit within the secretory pathway. In this study, different derivatives of the K1 precursor were constructed to analyze the biological function of particular structural components and their influence on toxin activity as well as the formation of protective immunity. Our data implicate an inactivation of the α subunit during toxin maturation and provide the basis for an updated model of K1 maturation within the host cell's secretory pathway. The killer phenotype in the baker's yeast relies on two double-stranded RNA viruses that are persistently present in the cytoplasm. As they carry the same receptor populations as sensitive cells, killer yeast cells need-in contrast to various bacterial toxin producers-a specialized immunity mechanism. The ionophoric killer toxin K1 leads to the formation of cation-specific pores in the plasma membrane of sensitive yeast cells. Based on the data generated in this study, we were able to update the current model of toxin processing, validating the temporary inactivation of the toxic α subunit during maturation in the secretory pathway of the killer yeast.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7021474PMC
http://dx.doi.org/10.1128/mSphere.00979-19DOI Listing

Publication Analysis

Top Keywords

killer yeast
12
secretory pathway
12
toxin
8
killer toxin
8
sensitive cells
8
cells killer
8
immunity mechanism
8
toxic subunit
8
pathway killer
8
yeast cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!