βC1 Protein Induces Autophagy by Disrupting the Interaction of Autophagy-Related Protein 3 with Glyceraldehyde-3-Phosphate Dehydrogenases.

Plant Cell

MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China

Published: April 2020

Autophagy plays an important role in plant-pathogen interactions. Several pathogens including viruses induce autophagy in plants, but the underpinning mechanism remains largely unclear. Furthermore, in virus-plant interactions, viral factor(s) that induce autophagy have yet to be identified. Here, we report that the βC1 protein of (CLCuMuB) interacts with cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC), a negative autophagic regulator, to induce autophagy in CLCuMuB βC1 bound to GAPCs and disrupted the interaction between GAPCs and autophagy-related protein 3 (ATG3). A mutant βC1 protein (βC1) in which I45, Y48, and I53 were all substituted with Ala (A), had a dramatically reduced binding capacity with GAPCs, failed to disrupt the GAPCs-ATG3 interactions and failed to induce autophagy. Furthermore, mutant virus carrying βC1 showed increased symptoms and viral DNA accumulation associated with decreased autophagy in plants. These results suggest that CLCuMuB βC1 activates autophagy by disrupting GAPCs-ATG3 interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145496PMC
http://dx.doi.org/10.1105/tpc.19.00759DOI Listing

Publication Analysis

Top Keywords

induce autophagy
16
βc1 protein
12
autophagy
8
autophagy disrupting
8
autophagy-related protein
8
autophagy plants
8
clcumub βc1
8
gapcs-atg3 interactions
8
βc1
7
protein induces
4

Similar Publications

Background: Resistance to temozolomide (TMZ) remains is an important cause of treatment failure in patients with glioblastoma multiforme (GBM). ADAR1, as a member of the ADAR family, plays an important role in cancer progression and chemotherapy resistance. However, the mechanism by which ADAR1 regulates GBM progression and TMZ resistance is still unclear.

View Article and Find Full Text PDF

Drug resistance is a common challenge in clinical tumor treatment. A reduction in drug sensitivity of tumor cells is often accompanied by an increase in autophagy levels, leading to autophagy-related resistance. The effectiveness of combining chemotherapy drugs with autophagy inducers/inhibitors has been widely confirmed, but the mechanisms are still unclear.

View Article and Find Full Text PDF

mtSTAT3 suppresses rheumatoid arthritis by regulating Th17 and synovial fibroblast inflammatory cell death with IL-17-mediated autophagy dysfunction.

Exp Mol Med

January 2025

Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

Th17 cells are activated by STAT3 factors in the nucleus, and these factors are correlated with the pathologic progression of rheumatoid arthritis (RA). Recent studies have demonstrated the presence of STAT3 in mitochondria, but its function is unclear. We investigated the novel role of mitochondrial STAT3 (mitoSTAT3) in Th17 cells and fibroblast-like synoviocytes (FLSs) and analyzed the correlation of mitoSTAT3 with RA.

View Article and Find Full Text PDF

Scutellarin inhibits pyroptosis via selective autophagy degradation of p30/GSDMD and suppression of ASC oligomerization.

Pharmacol Res

January 2025

MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China; Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

Most of the pyroptosis inhibitors targeted Gasdermin D (GSDMD) are functioning by restraining GSDMD-N (p30) oligomerization. For the first time, this work discovered a pyroptosis inhibitor taking effect by degrading p30 and GSDMD. As the principal bioactive constituent in Erigeron breviscapus, scutellarin (SCU) assumes a pivotal role in the realm of anti-inflammatory processes.

View Article and Find Full Text PDF

Duck Tembusu virus induced mitophagy in vacuolate spermatogenic cells is mediated by PINK1-Parkin pathway.

Poult Sci

January 2025

Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China. Electronic address:

As a significant emerging and re-emerging pathogen in China, the widely spread of Duck Tembusu virus (DTMUV) caused enormous economic losses to poultry industry. On account of DTMUV diseases' main symptoms on haemorrhagic oophoritis, intensive attentions were focused on female reproductive organ. Nevertheless, the DTMUV infection of sperm and testis manifested that testis was an important vector for vertical transmission of DTMUV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!