Enterococci, which are commonly found in the environment, cause serious infections despite the absence of well-defined virulence factors and toxins. Knowing the virulence properties of enterococci is important to understand the complex pathogenic structures. In this study, we aimed to investigate the virulence factors (asa1, hyl, cylA, efa, ebp, ace, esp, gelE, sprE, fsrA, fsrB, fsrC genes, gelatinase activity, hemolysin, hydrogen peroxide and biofilm production) and antibiotic resistance of Enterococcus faecium and Enterococcus faecalis strains isolated from clinical specimens. A total of 110 enterococcus isolates which were accepted as infectious agents were included in the study. The polymerase chain reaction method was used to identify the isolates and to detect virulence genes. Characteristics of hemolysis, biofilm formation, hydrogen peroxide production and gelatinase activity were investigated by phenotypic methods. The antibiotic susceptibility test was performed with VITEK 2 automated system. E.faecalis ATCC 29212 standard strain was used as a quality control in all tests. Of the 110 enterococci isolates included in the study, 61 were identified as E.faecium and 49 as E.faecalis. The efa gene was the most frequently detected virulence gene (92.7%), followed by ace (83.6%), esp (66.4%), ebp (60.0%), cylA (50.9%), hyl (46.4%), asa1 (45.5%), gelE, sprE, fsrC (33.6%), fsrA (12.7%) and fsrB (11.8%). All genes except hyl were higher in E.faecalis isolates and the difference was statistically significant (p<0.05). Twenty-five (51%) E.faecalis and 1 (1.6%) E.faecium isolates had beta-hemolysis and the difference was statistically significant (p= 0.000). Seven (11.5%) E.faecium and 4 (8.2%) E.faecalis isolates formed biofilm, but the difference was not statistically significant (p> 0.05). Two (3.3%) E.faecium and 14 (28.6%) E.faecalis isolates exhibited gelatinase activity and the difference between the two species was statistically significant (p= 0.000). Hydrogen peroxide production was not detected in any of the isolates. The highest resistance rate was determined against ciprofloxacin (70.9%). The resistance to ampicillin was 69.1%, high level streptomycin 65.1%, high level gentamicin 39.4%, vancomycin and teicoplanin 4.5%, and linezolid 1.8%. In conclusion, our data indicated that virulence factors except hyl gene and biofilm production were higher in E.faecalis isolates but E.faecium isolates were more resistant to antibiotics. In order to prevent infection of such virulent or resistant isolates in the hospital setting, infection control measures must be followed. In vivo studies are needed for the better understanding of the virulence of enterococci.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5578/mb.68810 | DOI Listing |
Background: Candidiasis can be present as a cutaneous, mucosal, or deep-seated organ infection, which is caused by more than 20 types of Candida spp., with C. albicans being the most common.
View Article and Find Full Text PDFClin Microbiol Rev
January 2025
Laboratory of Pathology of Implant Infections, Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
SUMMARY is a major human pathogen. It can cause many types of infections, in particular bacteremia, which frequently leads to infective endocarditis, osteomyelitis, sepsis, and other debilitating diseases. The development of secondary infections is based on the bacterium's ability to associate with endothelial cells lining blood vessels.
View Article and Find Full Text PDFmBio
January 2025
Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.
is a bacterium associated with colorectal cancer (CRC) tumorigenesis, progression, and metastasis. Fap2 is a fusobacteria-specific outer membrane galactose-binding lectin that mediates adherence to and invasion of CRC tumors. Advances in omics analyses provide an opportunity to profile and identify microbial genomic features that correlate with the cancer-associated bacterial virulence factor Fap2.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China.
Large-scale studies indicate a strong relationship between the gut microbiome, type 2 diabetes mellitus (T2DM), and atherosclerotic cardiovascular disease (ASCVD). Here, a higher abundance of the type III secretion system (T3SS) virulence factors of Enterobacteriaceae/Escherichia-Shigella in patients with T2DM-related-ASCVD, which correlates with their atherosclerotic stenosis is reported. Overexpression of T3SS via Citrobacter rodentium (CR) infection in Apoe-/- T2DM mice exacerbated atherosclerotic lesion formation and increased gut permeability.
View Article and Find Full Text PDFQ Rev Biophys
January 2025
Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), Bilbao, Spain.
The 'Viroporin' family comprises a number of mostly small-sized, integral membrane proteins encoded by animal and plant viruses. Despite their sequence and structural diversity, viroporins share a common functional trend: their capacity to assemble transmembrane channels during the replication cycle of the virus. Their selectivity spectrum ranges from low-pH-activated, unidirectional proton transporters, to size-limited permeating pores allowing passive diffusion of metabolites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!