Small interfering RNA (siRNA) is a critical loss-of-function tool for elucidating the role of genes in biomedical studies. The effective use of siRNA needs transfection technology that delivers siRNA into the correct location of target cells, especially those which are extremely difficult to transfect. Macrophages, which play an important role in the pathogenesis of many diseases, are known to be extremely hard to transfect. Thus, to elucidate the functions of genes in human macrophage biology, it is essential to devise technology for efficient siRNA transfection. However, a fast and efficient method for siRNA transfection in primary human macrophages has not been reported. The siRNA transfection is a tug-of-war between transfection rate and cytotoxicity. A higher transfection rate is generally accompanied with increased cytotoxicity, therefore, choosing a transfection reagent that limits cell death while maintain a desirable transfection rate is important. In this study, we employed auto-analysis function of the IncuCyte® to devise a fast and cost-saving technology for efficient transfection of adherent cells and particularly human macrophages. We show that DharmaFECT3 transfection reagent from Dharmacon was the most efficient in transfecting primary human monocyte-derived macrophages and PMA-differentiated U937 cells, whereas other transfection reagents tested were cytotoxic. This method exhibited approximately 85% transfection efficiency in human macrophages. Moreover, siRNA silencing of with this technique effectively protected primary human macrophages and PMA-differentiated U937 cells against Resveratrol-induced cell death. In addition, this method inherently takes the balance between transfection rate and cytotoxicity of siRNA transfection reagents into consideration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577235 | PMC |
http://dx.doi.org/10.1080/15476286.2020.1730081 | DOI Listing |
Asian Pac J Cancer Prev
January 2025
Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia.
Objective: Programmed cell death-1 (PD-1, encoded by PDCD1) regulatory network participates in glioblastoma multiforme development. However, such a network in trastuzumab-resistant human epidermal growth factor receptor 2-positive (HER2+) breast cancer remains to be determined. Accordingly, this study was aimed to explore the PD-1 regulatory network responsible for the resistance of breast cancer cells to trastuzumab through a bioinformatics approach.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan.
Background/purpose: Dual-cure resin-cements are used for various dental restorations. However, whether the curing modes of these resin-cements influence gingival inflammation remains unclear. Hence, herein, we evaluated the effects of dual-cure resin-cement curing modes on gingival cytotoxicity and inflammatory responses.
View Article and Find Full Text PDFIn Vitro Model
June 2024
In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea University, Sketty, Wales SA2 8PP UK.
Unlabelled: Owing to increased pressure from ethical groups and the public to avoid unnecessary animal testing, the need for new, responsive and biologically relevant in vitro models has surged. Models of the human alveolar epithelium are of particular interest since thorough investigations into air pollution and the effects of inhaled nanoparticles and e-cigarettes are needed. The lung is a crucial organ of interest due to potential exposures to endogenous material during occupational and ambient settings.
View Article and Find Full Text PDFLife Med
August 2024
The Bone Marrow Transplantation Center of The First Affiliated Hospital &Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310012, China.
Clinical and preclinical research has demonstrated that iPSC-derived NK (iNK) cells have a high therapeutic potential, yet poor understanding of the detailed process of their differentiation and their counterpart cell development has hindered therapeutic iNK cell production and engineering. Here we dissect the crucial differentiation of both fetal liver NK cells and iNK cells to enable the rational design of advanced iNK production protocols. We use a comparative analysis of single-cell RNA-seq (scRNA-seq) to pinpoint key factors lacking in the induced setting which we hypothesized would hinder iNK differentiation and/ or functionality.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, United States.
Introduction: The immune compartment within fetal chorionic villi is comprised of fetal Hofbauer cells (HBC) and invading placenta-associated maternal monocytes and macrophages (PAMM). Recent studies have characterized the transcriptional profile of the first trimester (T1) placenta; however, the phenotypic and functional diversity of chorionic villous immune cells at term (T3) remain poorly understood.
Methods: To address this knowledge gap, immune cells from human chorionic villous tissues obtained from full-term, uncomplicated pregnancies were deeply phenotyped using a combination of flow cytometry, single-cell RNA sequencing (scRNA-seq, CITE-seq) and chromatin accessibility profiling (snATAC-seq).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!