Flavonoids possess different interesting biological properties, including antibacterial, antiviral, anti-inflammatory and antioxidant activities. However, unfortunately, these molecules present different bottlenecks, such as low aqueous solubility, photo and oxidative degradability, high first-pass effect, poor intestinal absorption and, hence, low systemic bioavailability. A variety of delivery systems have been developed to circumvent these drawbacks, and among them, in this work niosomes have been selected to encapsulate the hepatoprotective natural flavonoid quercetin. The aim of this study was to prepare nanosized quercetin-loaded niosomes, formulated with different monolaurate sugar esters (i.e., sorbitan C12; glucose C12; trehalose C12; sucrose C12) that act as non-ionic surfactants and with cholesterol as stabilizer (1:1 and 2:1 ratio). Niosomes were characterized under the physicochemical, thermal and morphological points of view. Moreover, after the analyses of the in vitro biocompatibility and the drug-release profile, the hepatoprotective activity of the selected niosomes was evaluated in vivo, using the carbon tetrachloride (CCl)-induced hepatotoxicity in rats. Furthermore, the levels of glutathione and glutathione peroxidase (GSH and GPX) were measured. Based on results, the best formulation selected was glucose laurate/cholesterol at molar ratio of 1:1, presenting spherical shape and a particle size (PS) of 161 ± 4.6 nm, with a drug encapsulation efficiency (EE%) as high as 83.6 ± 3.7% and sustained quercetin release. These niosomes showed higher hepatoprotective effect compared to free quercetin in vivo, measuring serum biomarker enzymes (i.e., alanine and aspartate transaminases (ALT and AST)) and serum biochemical parameters (i.e., alkaline phosphatase (ALP) and total proteins), while following the histopathological investigation. This study confirms the ability of quercetin loaded niosomes to reverse CCl intoxication and to carry out an antioxidant effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076437 | PMC |
http://dx.doi.org/10.3390/pharmaceutics12020143 | DOI Listing |
Polymers (Basel)
February 2025
Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece.
Amphiphilic statistical copolymers can be utilized for the formulation of nanocarriers for the drug delivery of insoluble substances. Oligoethylene glycol methylether methacrylate and methyl methacrylate are two biocompatible monomers that can be used for biological applications. In this work, the synthesis of linear poly(oligoethylene glycol methylether methacrylate-co-methyl methacrylate), P(OEGMA-co-MMA), and statistical copolymers via reversible addition fragmentation chain transfer (RAFT) polymerization is reported.
View Article and Find Full Text PDFInt J Pharm
March 2025
School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India. Electronic address:
In this study, quercetin-incorporated squalene nanostructured lipid carriers (QS-NLCs) were developed to mitigate the pathological conditions of dry eye disease (DED). The melt emulsification method was used to prepare QS-NLCs. The resulting NLCs have 93.
View Article and Find Full Text PDFIran J Pharm Res
December 2024
Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Background: Atherosclerosis remains the leading cause of mortality worldwide, highlighting the urgent need for innovative treatments targeting chronic inflammation. Recent research indicates that quercetin (QCT) and curcumin, two naturally occurring compounds, have potential therapeutic benefits in cardiovascular diseases.
Objectives: This study focuses on the novel synthesis of nano-quercetin (N-QCT) encapsulated in solid lipid nanoparticles (SLNs) and investigates the synergistic cardioprotective effects of N-QCT and curcumin on human vascular smooth muscle cells (VSMCs).
Int J Nanomedicine
March 2025
Department of Vascular Surgery, the second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
Introduction: Arteriovenous graft (AVG) is an important option for establishing hemodialysis access in patients with end-stage chronic kidney disease (CKD). Decellularized tissue-engineered vascular graft (dTEVG), due to its excellent biocompatibility and regenerative potential, holds promise for use in AVG; however, poor remodeling remains a challenge. Quercetin (Qu) can effectively regulate macrophage polarization and promote tissue remodeling and regeneration, yet its low bioavailability limits its clinical application.
View Article and Find Full Text PDFAdv Mater
March 2025
School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China.
Diabetic wounds are refractory and recurrent diseases that necessitate the development of multifunctional dressings. Inspired by the structure and function of the skin, we herein delicately design a novel swollen hydrophobic hydrogel (QL@MAB) composed of hydrophobic methyl acrylate (MA) and (3-acrylamidophenyl)boronic acid (AAPBA) network and co-loaded with antioxidant quercetin (Q) and antibiotic levofloxacin (L) for efficient diabetic wound therapy. The hydrophobic MA segments undergo phase separation to form a dense "epidermis", ensuring prolonged drug diffusion, long-term water retention, and high water content.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!