Collective cell migration plays crucial roles in tissue remodeling, wound healing, and cancer cell invasion. However, its underlying mechanism remains unknown. Previously, we showed that the RhoA-targeting guanine nucleotide exchange factor Solo (ARHGEF40) is required for tensile force-induced RhoA activation and proper organization of keratin-8/keratin-18 (K8/K18) networks. Here, we demonstrate that Solo knockdown significantly increases the rate at which Madin-Darby canine kidney cells collectively migrate on collagen gels. However, it has no apparent effect on the migratory speed of solitary cultured cells. Therefore, Solo decelerates collective cell migration. Moreover, Solo localized to the anteroposterior regions of cell-cell contact sites in collectively migrating cells and was required for the local accumulation of K8/K18 filaments in the forward areas of the cells. Partial Rho-associated protein kinase (ROCK) inhibition or K18 or plakoglobin knockdown also increased collective cell migration velocity. These results suggest that Solo acts as a brake for collective cell migration by generating pullback force at cell-cell contact sites via the RhoA-ROCK pathway. It may also promote the formation of desmosomal cell-cell junctions related to K8/K18 filaments and plakoglobin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185966PMC
http://dx.doi.org/10.1091/mbc.E19-07-0357DOI Listing

Publication Analysis

Top Keywords

collective cell
20
cell migration
20
nucleotide exchange
8
exchange factor
8
factor solo
8
solo decelerates
8
decelerates collective
8
cell-cell contact
8
contact sites
8
k8/k18 filaments
8

Similar Publications

ERK activation waves coordinate mechanical cell competition leading to collective elimination via extrusion of bacterially infected cells.

Cell Rep

January 2025

Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany. Electronic address:

Epithelial cells respond to infection with the intracellular bacterial pathogen Listeria monocytogenes by altering their mechanics to promote collective infected cell extrusion (CICE) and limit infection spread across cell monolayers. However, the underlying biochemical pathways remain elusive. Here, using in vitro (epithelial monolayers) and in vivo (zebrafish larvae) models of infection with L.

View Article and Find Full Text PDF

Dynamically reconfigurable acoustofluidic metasurface for subwavelength particle manipulation and assembly.

Nat Commun

January 2025

Bio-Acoustic MEMS in Medicine (BAMM) Lab, Canary Center at Stanford, Department of Radiology, School of Medicine, Stanford University, California, CA, USA.

Particle manipulation plays a pivotal role in scientific and technological domains such as materials science, physics, and the life sciences. Here, we present a dynamically reconfigurable acoustofluidic metasurface that enables precise trapping and positioning of microscale particles in fluidic environments. By harnessing acoustic-structure interaction in a passive membrane resonator array, we generate localized standing acoustic waves that can be reconfigured in real-time.

View Article and Find Full Text PDF

CRISPRi-based screens in iAssembloids to elucidate neuron-glia interactions.

Neuron

January 2025

Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA. Electronic address:

The complexity of the human brain makes it challenging to understand the molecular mechanisms underlying brain function. Genome-wide association studies have uncovered variants associated with neurological phenotypes. Single-cell transcriptomics have provided descriptions of changes brain cells undergo during disease.

View Article and Find Full Text PDF

Full Quantum Dynamics Study for H Atom Scattering from Graphen.

J Phys Chem A

January 2025

Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay UMR 8214, 91405 Orsay, France.

This study deals with the understanding of hydrogen atom scattering from graphene, a process critical for exploring C-H bond formation and energy transfer during atom surface collision. In our previous work [Shi, L.; 2023, 159, 194102], starting from a cell with 24 carbon atoms treated periodically, we have achieved quantum dynamics (QD) simulations with a reduced-dimensional model (15D) and a simulation in full dimensionality (75D).

View Article and Find Full Text PDF

Epigenetics in the modern era of crop improvements.

Sci China Life Sci

January 2025

State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.

Epigenetic mechanisms are integral to plant growth, development, and adaptation to environmental stimuli. Over the past two decades, our comprehension of these complex regulatory processes has expanded remarkably, producing a substantial body of knowledge on both locus-specific mechanisms and genome-wide regulatory patterns. Studies initially grounded in the model plant Arabidopsis have been broadened to encompass a diverse array of crop species, revealing the multifaceted roles of epigenetics in physiological and agronomic traits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!