Bone metabolism depends on the balance between osteoclast-driven bone resorption and osteoblast-mediated bone formation. Diseases like osteoporosis are characterized by increased bone destruction due to partially enhanced osteoclastogenesis. Here, we report that the post-translational SUMO modification is critical for regulating osteoclastogenesis. The expression of the SUMO-specific protease SENP3 is downregulated in osteoclast precursors during osteoclast differentiation. Mice with SENP3 deficiency in bone marrow-derived monocytes (BMDMs) exhibit more severe bone loss due to over-activation of osteoclasts after ovariectomy. Deleting SENP3 in BMDMs promotes osteoclast differentiation. Mechanistically, loss of SENP3 increases interferon regulatory factor 8 (IRF8) SUMO3 modification at the K310 amino acid site, which upregulates expression of the nuclear factor of activated T cell c1 (NFATc1) and osteoclastogenesis. In summary, IRF8 de-SUMO modification mediated by SENP3 suppresses osteoclast differentiation and suggests strategies to treat bone loss diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2020.01.036DOI Listing

Publication Analysis

Top Keywords

osteoclast differentiation
12
senp3 suppresses
8
bone
8
bone marrow-derived
8
marrow-derived monocytes
8
bone loss
8
senp3
6
suppresses osteoclastogenesis
4
osteoclastogenesis de-conjugating
4
de-conjugating sumo2/3
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!