Pulmonary vasoconstriction resulting from intermittent hypoxia (IH) contributes to pulmonary hypertension (pHTN) in patients with sleep apnea (SA), although the mechanisms involved remain poorly understood. Based on prior studies in patients with SA and animal models of SA, the objective of this study was to evaluate the role of PKCβ and mitochondrial reactive oxygen species (mitoROS) in mediating enhanced pulmonary vasoconstrictor reactivity after IH. We hypothesized that PKCβ mediates vasoconstriction through interaction with the scaffolding protein PICK1 (protein interacting with C kinase 1), activation of mitochondrial ATP-sensitive potassium channels (mitoK), and stimulated production of mitoROS. We further hypothesized that this signaling axis mediates enhanced vasoconstriction and pHTN after IH. Rats were exposed to IH or sham conditions (7 h/d, 4 wk). Chronic oral administration of the antioxidant Tempol or the PKCβ inhibitor LY-333531 abolished IH-induced increases in right ventricular systolic pressure and right ventricular hypertrophy. Furthermore, scavengers of O or mitoROS prevented enhanced PKCβ-dependent vasoconstrictor reactivity to endothelin-1 in pulmonary arteries from IH rats. In addition, this PKCβ/mitoROS signaling pathway could be stimulated by the PKC activator PMA in pulmonary arteries from control rats, and in both rat and human pulmonary arterial smooth muscle cells. These responses to PMA were attenuated by inhibition of mitoK or PICK1. Subcellular fractionation and proximity ligation assays further demonstrated that PKCβ acutely translocates to mitochondria upon stimulation and associates with PICK1. We conclude that a PKCβ/mitoROS signaling axis contributes to enhanced vasoconstriction and pHTN after IH. Furthermore, PKCβ mediates pulmonary vasoconstriction through interaction with PICK1, activation of mitoK, and subsequent mitoROS generation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7258822 | PMC |
http://dx.doi.org/10.1165/rcmb.2019-0351OC | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!