This study aimed at investigating the crucial mechanisms underlying non-small cell lung cancer (NSCLC). NSCLC-related microarray data GSE27262 were downloaded from Gene Expression Omnibus, including 7 NSCLC 1a samples, 18 NSCLC 1b samples, and their matched normal samples. The common differentially expressed genes (DEGs) between NSCLC 1a and NSCLC 1b samples were identified, followed by protein-protein interaction (PPI) network construction, functional enrichment analysis, and weighted gene co-expression network analysis (WGCNA). Further, the key DEGs were confirmed based on the lung adenocarcinoma (LUAD) data from the Cancer Genome Atlas (TCGA) database, followed by clinical prognostic analysis. There were 802 (NSCLC 1a) and 734 (NSCLC 1b) DEGs identified. By intersection analysis, we obtained 255 upregulated and 97 downregulated common DEGs. Upregulated DEGs were significantly enriched in the plasma membrane and extracellular region, whereas the downregulated DEGs were significantly enriched in the cytoskeleton and cell cycle process. Topoisomerase (DNA) II alpha (TOP2A) and cyclin B1 (CCNB1) were hub nodes in the PPI network. Based on WGCNA, 5 modules were obtained. In the module MEgreen, DEGs were significantly enriched in cytokine-cytokine receptor interaction and focal adhesion. Notably, 1797 DEGs were identified based on the LUAD data from the TCGA database; among them, 285 DEGs were common DEGs identified from GSE27262 data. Upregulation of TOP2A and CCNB1 was correlated with poor survival of patients. The hub genes and key pathways identified in this study are helpful for a comprehensive knowledge of the molecular mechanisms of NSCLC.

Download full-text PDF

Source
http://dx.doi.org/10.1089/cmb.2019.0081DOI Listing

Publication Analysis

Top Keywords

nsclc samples
12
degs identified
12
degs enriched
12
degs
10
non-small cell
8
cell lung
8
lung cancer
8
nsclc
8
ppi network
8
luad data
8

Similar Publications

Background: Patients with non-small cell lung cancer (NSCLC) are prone to developing brain metastases (BMs), particularly those with epidermal growth factor receptor (EGFR) mutations. In clinical practice, treatment-naïve EGFR-mutant NSCLC patients with asymptomatic BMs tend to choose EGFR-tyrosine kinase inhibitors (TKIs) as first-line therapy and defer intracranial radiotherapy (RT). However, the effectiveness of upfront intracranial RT remains unclear.

View Article and Find Full Text PDF

Background: LINC00312 has shown to play a suppressive role in the development and progression of non-small cell lung cancer (NSCLC). However, the expression pattern and diagnostic role of circulating LINC00312 in NSCLC remain to be confused.

Methods: A total of 319 patients diagnosed with NSCLC and 180 healthy volunteers were enrolled from the First Affiliated Hospital of Huzhou University between January, 2022 and December, 2023.

View Article and Find Full Text PDF

Background: This study aimed to evaluate the necessity of lymph node sampling for specific non-small cell lung cancer (NSCLC).

Methods: Patients with small-size (≤2 cm) NSCLC who underwent surgical resection between 2009 and 2022 were retrospectively screened. The characteristics of patients with nodal metastasis were demonstrated.

View Article and Find Full Text PDF

Comparative investigation of lung adenocarcinoma and squamous cell carcinoma transcriptome to reveal potential candidate biomarkers: An explainable AI approach.

Comput Biol Chem

December 2024

Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India. Electronic address:

Patients with Non-Small Cell Lung Cancer (NSCLC) present a variety of clinical symptoms, such as dyspnea and chest pain, complicating accurate diagnosis. NSCLC includes subtypes distinguished by histological characteristics, specifically lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). This study aims to compare and identify abnormal gene expression patterns in LUAD and LUSC samples relative to adjacent healthy tissues using an explainable artificial intelligence (XAI) framework.

View Article and Find Full Text PDF

Precision oncology (PO) has significantly advanced lung cancer treatment by enabling personalised therapy based on genetic mutations. However, equitable access to molecular testing and targeted therapies remains a challenge, particularly in resource-limited settings such as the Brazilian Public Health System (SUS). To identify the challenges faced by SUS in caring for patients with non-small cell lung cancer (NSCLC) in terms of access to Precision Oncology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!