Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session8tn7urgi6jj1np4374dfsun3ko4de624): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To demonstrate that constant coefficient of variation (CV), but nonconstant absolute variance in MRI relaxometry (T , T , R , R ) data leads to erroneous conclusions based on standard linear models such as ordinary least squares (OLS). We propose a gamma generalized linear model identity link (GGLM-ID) framework that factors the inherent CV into parameter estimates. We first examined the effects on calculations of contrast agent relaxivity before broadening to other applications such as analysis of variance (ANOVA) and liver iron content (LIC).
Methods: Eight models including OLS and GGLM-ID were initially fit to data obtained on sulfated dextran iron oxide (SDIO) nanoparticles. Both a resampling simulation on the data as well as two separate Monte Carlo simulations (with and without concentration error) were performed to determine mean square error (MSE) and type I error rate. We then evaluated the performance of OLS/GGLM-ID on R repeatability and LIC data sets.
Results: OLS had an MSE of 4-5× that of GGLM-ID as well as a type I error rate of 20-30%, whereas GGLM-ID was near the nominal 5% level in the relaxivity study. Only OLS found statistically significant effects of MRI facility on relaxivity in an R repeatability study, but no significant differences were found in a resampling, whereas GGLM was more consistent. GGLM-ID was also superior to OLS for modeling LIC.
Conclusions: OLS leads to erroneous conclusions when analyzing MRI relaxometry data. GGLM-ID factors in the inherent CV of an MRI experiment, leading to more reproducible conclusions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7317199 | PMC |
http://dx.doi.org/10.1002/mrm.28192 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!