A new family of push-pull biphenyl-azopyrrole compounds 3b-g and 4b-d was efficiently obtained via a Suzuki cross-coupling reaction between 2-(4'-iodophenyl-azo)-N-methyl pyrrole (1a) or 3-(4'-iodophenyl-azo)-1,2,5-trimethyl pyrrole (2a) and 4'-substituted phenyl boronic acids in excellent yields. The influence of the π-biphenyl backbone and pyrrole pattern substitution was correlated with their optical properties. Solvatochromic studies via UV-visible spectrophotometry revealed that the inclusion of a 4'-nitro-biphenyl fragment favors a red-shift of the main absorption band in these azo compounds compared with their non-substituted analogues. Likewise, optical band-gaps were estimated by means of electronic absorption spectra and correlated with TD-DFT studies. The pyrrole pattern substitution and the π-conjugated backbone exhibit a clear influence on their thermal isomerization kinetics at room temperature. In all cases, biphenylazo-pyrrole compounds lead to the formation of J-type aggregates in binary MeOH : H2O solvents. Under these conditions, compounds 3b-c undergo a water-assisted cis-to-trans isomerization at room temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9ob02410gDOI Listing

Publication Analysis

Top Keywords

pyrrole pattern
8
pattern substitution
8
room temperature
8
π-extended push-pull
4
push-pull azo-pyrrole
4
azo-pyrrole photoswitches
4
photoswitches synthesis
4
synthesis solvatochromism
4
solvatochromism optical
4
optical band
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!