Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Several studies have demonstrated potential improvements in treatment time through the use of dynamic arcs for delivery of stereotactic body radiation therapy (SBRT) on Cyberknife. However, the delivery system has a finite accuracy, so that potential exists for dosimetric uncertainties. This study estimates the expected dosimetric accuracy of dynamic delivery of SBRT, based on realistic estimates of the uncertainties in delivery parameters.
Methods: Five SBRT patient cases (prostate A - conventional, prostate B - brachytherapy-type, lung, liver, partial left breast) were retrospectively studied. Treatment plans were produced for a fixed arc trajectory using fluence optimization, segmentation, and direct aperture optimization. Dose rate uncertainty was modeled as a smoothly varying random fluctuation of ± 1.0%, ±2.0% or ± 5.0% over a time period of 10, 30 or 60 s. Multileaf collimator uncertainty was modeled as a lag in position of each leaf up to 0.25 or 0.5 mm. Robot pointing error was modeled as a shift of the target location, with the direction of the shift chosen as a random angle with respect to the multileaf collimator and with a random magnitude in the range 0.0-1.0 mm at the delivery nodes and with an additional random magnitude of 0.5-1.0 mm in between the delivery nodes. The impact of the errors was investigated using dose-volume histograms.
Results: Uncertainty in dose rate has the effect of varying the total monitor units delivered, which in turn produces a variation in mean dose to the planning target volume. The random sampling of dose rate error produces a distribution of mean doses with a standard deviation proportional to the magnitude of the dose rate uncertainty. A lag in multileaf collimator position of 0.25 or 0.5 mm produces a small impact on the delivered dose. In general, an increase in the PTV mean dose of around 1% is observed. An error in robot pointing of the order of 1 mm produces a small increase in dose inhomogeneity to the planning target volume, sometimes accompanied by an increase in mean dose by around 1%.
Conclusions: Based upon the limited data available on the dose rate stability and geometric accuracy of the Cyberknife system, this study estimates that dynamic arc delivery can be accomplished with sufficient accuracy for clinical application. Dose rate variation produces a change in dose to the planning target volume according to the perturbation of total monitor units delivered, while multileaf collimator lag and robot pointing error typically increase the mean dose to the planning target volume by up to 1%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7216988 | PMC |
http://dx.doi.org/10.1002/mp.14090 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!