Grafting of vegetable seedlings is a unique horticultural technology, practiced for more than five decades, aiming to overcome problems associated with intensive cultivation on limited arable land. Grafting can protect vegetables against soil-borne diseases and nematodes; against abiotic stresses such as high or low temperatures, salinity, drought or excessive soil-water content; and against elevated soil concentrations of heavy metals and organic pollutants. Watermelon is one of the most popular vegetables to be grafted, and more than 90% of the plants worldwide are commercially grafted. This mini review aims to summarize the latest available information about the effects of rootstock/scion combinations with respect to enhancing or impairing watermelon fruit-quality. A better understand of the influence of rootstock/scion compatibility or incompatibility on fruit-quality parameters will facilitate decision-making by growers and direct breeding programs to produce high-quality grafted fruits in a cost-effective manner. © 2020 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.10325 | DOI Listing |
BMC Plant Biol
December 2024
Department of Vegetable and Mushroom Growing, Hungarian University of Agriculture and Life Sciences, Villányi Út 29-43, Budapest, Hungary.
Background: The use of vegetable grafting has proven to be effective not only in providing stress resistance but also improving fruit yields. There have been no studies on grafted vegetables' effects on the vascular systems, specifically xylem vessels. This study tested the effects of two groups of rootstocks, Solanum spp.
View Article and Find Full Text PDFJ Exp Bot
November 2024
Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy.
Grafting has been exploited since 7000 BC to enhance productivity, disease resistance, and adaptability of cultivated plants to stressful conditions especially in woody crops such as grapevine (Vitis spp.). In contrast, the application of sequence specific double-stranded RNAs (dsRNAs) to control fungal pathogens and insect pests has only been recently developed.
View Article and Find Full Text PDFPlant Direct
December 2024
Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning Vellore Institute of Technology Vellore Tamil Nadu India.
Grafting is a technique that involves attaching a rootstock to the aerial part of another genotype or species (scion), leading to improved crop performance and sustainable growth. The ability to tolerate abiotic stresses depends on cell membrane stability, a reduction in electrolyte leakage, and the species of scion and rootstock chosen. This external mechanism, grafting, serves as a beneficial tool in influencing crop performance by combining nutrient uptake and translocation to shoots, promoting sustainable plant growth, and enhancing the potential yield of both fruit and vegetable crops.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China. Electronic address:
Leaf chlorosis caused by rootstock-scion incompatibility in citrus orchard badly affects fruit yield and quality. Starch excess and its key genes underlying citrus leaf chlorosis in incompatible graft remained unknown. Here, using created model incompatible/ compatible rootstock-scion combinations, we investigated starch content and distribution in 116 various chlorotic leaves of incompatible graft, and characterized the relationship between leaf chlorosis and starch accumulation.
View Article and Find Full Text PDFEnviron Microbiol Rep
August 2024
EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, France.
Understanding the effects of grapevine rootstock and scion genotypes on arbuscular mycorrhizal fungi (AMF), as well as the roles of these fungi in plant development, could provide new avenues for adapting viticulture to climate change and reducing agrochemical inputs. The root colonization of 10 rootstock/scion combinations was studied using microscopy and metabarcoding approaches and linked to plant development phenotypes. The AMF communities were analysed using 18S rRNA gene sequencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!