Condensed tannins (CT) might improve animal and system-level efficiency due to enhanced protein efficiency and reduced CH4. This study evaluated the impact of quebracho tannin (QT) extract fed at 0%, 1.5%, 3%, and 4.5% of dry matter (DM), within a roughage-based diet on apparent digestibility of DM, organic matter (OM), fibrous fractions, and N retention and energy partitioning of growing steers (236 ± 16 kg BW). A Latin rectangle design with eight animals and four periods was used to determine the whole-animal exchange of CO2, O2, and CH4 as well as the collection of total feces and urine over a 48-h period, using two open-circuit, indirect calorimetry respiration chambers. Following the removal of steers from respiration chambers, rumen inoculum was collected to determine ruminal parameter, including volatile fatty acids (VFA) and ammonia. Animals were fed a 56.5% roughage diet at 1.7% BW (dry matter basis). Dry matter and gross energy intakes were influenced by the level of QT inclusion (P ≤ 0.036). Digestibility of DM, OM, and N was reduced with QT inclusion (P < 0.001), and fiber digestibility was slightly impacted (P > 0.123). QTs altered the N excretion route, average fecal N-to-total N ratio excreted increased 14%, and fecal N-to-urinary N ratio increased 38% (P < 0.001) without altering the retained N. Increased fecal energy with QT provision resulted in reduced dietary digestible energy (DE) concentration (Mcal/kg DM; P = 0.024). There were no differences in urinary energy (P = 0.491), but CH4 energy decreased drastically (P = 0.007) as QT inclusion increased. Total ruminal VFA concentration did not differ across treatments, but VFA concentration increased linearly with QT inclusion (P = 0.049). Metabolizable energy (ME) was not affected by the QT rate, and the conversion efficiency of DE-to-ME did not differ. Heat energy decreased (P = 0.013) with increased QT provision likely due to changes in the DE intake, but there was no difference in retained energy. There were no differences for retained energy or N per CO2 equivalent emission produced (P = 0.774 and 0.962, respectively), but improved efficiency for energy retention occurred for 3% QT. We concluded that QT provided up to 4.5% of dry matter intake (about 3.51% of CT, dry matter basis) does not affect N and energy retention within the current setting. Feeding QT reduced energy losses in the form of CH4 and heat, but the route of energy loss appears to be influenced by the rate of QT inclusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067532PMC
http://dx.doi.org/10.1093/jas/skaa047DOI Listing

Publication Analysis

Top Keywords

dry matter
20
energy
15
quebracho tannin
8
tannin extract
8
energy partitioning
8
45% dry
8
respiration chambers
8
matter basis
8
energy decreased
8
vfa concentration
8

Similar Publications

The surface of the eye is constantly exposed to the external environment and is affected by atmospheric conditions and air pollution, and dry eye is a typical ocular surface disease. The aim of this study is to determine whether there are seasonal differences in the number of dry eye operations in Japan and to investigate whether meteorological conditions and air pollutants are related to. The operations were examined using the National Database of Health Insurance Claims and Specific Health Checkups of Japan (NDB) database from fiscal years 2019 to 2021.

View Article and Find Full Text PDF

This study aimed to evaluate the effect of dietary supplementation with calcium propionate (CaPr) or sodium propionate (NaPr) on growth performance, ruminal fermentation, and meat quality of finishing lambs. Twenty-seven non-castrated Creole male lambs (24.95 ± 2.

View Article and Find Full Text PDF

Collecting fog water is crucial for dry areas since natural moisture and fog are significant sources of freshwater. Sustainable and energy-efficient water collection systems can take a page out of the cactus's playbook by mimicking its native fog gathering process. Inspired by the unique geometric structure of the cactus spine, we fabricated a bioinspired artificial fog collector consisting of cactus spines featuring barbs of different sizes and angles on the surfaces for water collection and a series of microcavities within microchannels inspired by Nepenthes Alata on the bottom to facilitate water flowing to the reservoir.

View Article and Find Full Text PDF

Carob pulp is a valuable source of cellulose-rich fraction (CRF) for many food applications. This study aimed to obtain and characterize a CRF derived from carob pulp waste after sugar removal and to evaluate its potential use in the 3D printing of cellulose-rich foods. Thus, the extraction of the CRF present in carob pulp (by obtaining the alcohol-insoluble residue) was carried out, accounting for nearly 45% dm (dry matter) of this byproduct.

View Article and Find Full Text PDF

The need for producing in environmentally resilient system drives new research to achieve sustainable beef production. Water footprint of the beef supply chain is a concern that must be addressed, aiming to improve water use within the production chain. One approach is genetic selection of beef cattle for water efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!