Neural Correlates of Learning Pure Tones or Natural Sounds in the Auditory Cortex.

Front Neural Circuits

Department of Neurobiology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.

Published: September 2020

Associative learning of pure tones is known to cause tonotopic map expansion in the auditory cortex (ACx), but the function this plasticity sub-serves is unclear. We developed an automated training platform called the "Educage," which was used to train mice on a go/no-go auditory discrimination task to their perceptual limits, for difficult discriminations among pure tones or natural sounds. Spiking responses of excitatory and inhibitory parvalbumin (PV) L2/3 neurons in mouse ACx revealed learning-induced overrepresentation of the learned frequencies, as expected from previous literature. The coordinated plasticity of excitatory and inhibitory neurons supports a role for PV neurons in homeostatic maintenance of excitation-inhibition balance within the circuit. Using a novel computational model to study auditory tuning curves, we show that overrepresentation of the learned tones does not necessarily improve discrimination performance of the network to these tones. In a separate set of experiments, we trained mice to discriminate among natural sounds. Perceptual learning of natural sounds induced "sparsening" and decorrelation of the neural response, consequently improving discrimination of these complex sounds. This signature of plasticity in A1 highlights its role in coding natural sounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6997498PMC
http://dx.doi.org/10.3389/fncir.2019.00082DOI Listing

Publication Analysis

Top Keywords

natural sounds
20
pure tones
12
learning pure
8
tones natural
8
auditory cortex
8
excitatory inhibitory
8
overrepresentation learned
8
sounds
6
tones
5
natural
5

Similar Publications

Background: The aim of this study was to investigate the clinical characteristics of severe pneumonia caused by human bocavirus (HBoV) infection to explore the associated risk factors.

Methods: We conducted a retrospective review of data from children hospitalized with HBoV pneumonia. Based on the severity of pneumonia, patients were categorized into severe pneumonia and non-severe pneumonia groups.

View Article and Find Full Text PDF

Chemosensory Cues Modulate Women's Jealousy Responses to Vocal Femininity.

Arch Sex Behav

January 2025

Department of Applied Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.

Jealousy responses to potential mating rivals are stronger when those rivals display cues indicating higher mate quality. One such cue is vocal femininity in women's voices, with higher-pitched voices eliciting greater jealousy responses. However, cues to mate quality are not evaluated in isolation.

View Article and Find Full Text PDF

Stress and psychological disorders are substantial public health concerns, necessitating innovative therapeutic strategies. This study investigated the psychophysiological benefits of nature-based soundscapes, drawing on the biophilia hypothesis. Using a randomized, acute cross-over design, 53 healthy participants experienced either a nature-based or a reference soundscape for 10 min, with a 2-min washout period.

View Article and Find Full Text PDF

Global declines in wild mussel populations and production have been linked to the impacts of climate change and pollution. Summer die-offs of mussels (Perna canaliculus), spat retention issues, and a severe decline in mussel spat settlement have been reported in the Marlborough Sounds, an important area for mussel farming in New Zealand. Preliminary evidence suggests that naturally occurring contaminants and changing land use in the surrounding areas, could contribute to the decline of this species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!