Nucleosome destabilization by nuclear non-coding RNAs.

Commun Biol

Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.

Published: February 2020

In the nucleus, genomic DNA is wrapped around histone octamers to form nucleosomes. In principle, nucleosomes are substantial barriers to transcriptional activities. Nuclear non-coding RNAs (ncRNAs) are proposed to function in chromatin conformation modulation and transcriptional regulation. However, it remains unclear how ncRNAs affect the nucleosome structure. Eleanors are clusters of ncRNAs that accumulate around the estrogen receptor-α (ESR1) gene locus in long-term estrogen deprivation (LTED) breast cancer cells, and markedly enhance the transcription of the ESR1 gene. Here we detected nucleosome depletion around the transcription site of Eleanor2, the most highly expressed Eleanor in the LTED cells. We found that the purified Eleanor2 RNA fragment drastically destabilized the nucleosome in vitro. This activity was also exerted by other ncRNAs, but not by poly(U) RNA or DNA. The RNA-mediated nucleosome destabilization may be a common feature among natural nuclear RNAs, and may function in transcription regulation in chromatin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012929PMC
http://dx.doi.org/10.1038/s42003-020-0784-9DOI Listing

Publication Analysis

Top Keywords

nucleosome destabilization
8
nuclear non-coding
8
non-coding rnas
8
esr1 gene
8
nucleosome
5
destabilization nuclear
4
rnas nucleus
4
nucleus genomic
4
genomic dna
4
dna wrapped
4

Similar Publications

In single cells, variably sized nanoscale chromatin structures are observed, but it is unknown whether these form a cohesive framework that regulates RNA transcription. Here, we demonstrate that the human genome is an emergent, self-assembling, reinforcement learning system. Conformationally defined heterogeneous, nanoscopic packing domains form by the interplay of transcription, nucleosome remodeling, and loop extrusion.

View Article and Find Full Text PDF

Unlabelled: Chromatin organization is essential for DNA packaging and gene regulation in eukaryotic genomes. While significant progresses have been made, the exact atomistic arrangement of nucleosomes remains controversial. Using a well-calibrated residue-level coarse-grained model and advanced dynamics modeling techniques, particularly the non-Markovian dynamics model, we map the free energy landscape of tetra-nucleosome systems, identify both metastable conformations and intermediate states in folding pathways, and quantify the folding kinetics.

View Article and Find Full Text PDF
Article Synopsis
  • - CTCF plays an essential role in shaping chromatin structure, which is important for gene regulation, but the specific ways this varies between different cell types are not completely understood.
  • - Research shows that differences in how CTCF binds to DNA, influenced by species-specific features and surrounding transcription factor motifs, affect chromatin accessibility and nucleosome arrangement in both mice and humans.
  • - The study highlights that individual transcription factors can either stabilize or destabilize CTCF binding in specific cell types, impacting the overall organization of chromatin over both short and long distances.
View Article and Find Full Text PDF

The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells. However, the molecular details that link enhancer sequence to TF binding, promoter state and transcription levels remain unclear. Here we applied single-molecule footprinting to measure the simultaneous occupancy of TFs, nucleosomes and other regulatory proteins on engineered enhancer-promoter constructs with variable numbers of TF binding sites for both a synthetic TF and an endogenous TF involved in the type I interferon response.

View Article and Find Full Text PDF

Epigenetic modulation via the C-terminal tail of H2A.Z.

Nat Commun

October 2024

Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.

H2A.Z-nucleosomes are present in both euchromatin and heterochromatin and it has proven difficult to interpret their disparate roles in the context of their stability features. Using an in situ assay of nucleosome stability and DT40 cells expressing engineered forms of the histone variant we show that native H2A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!