Cobalt (Co) is an essential component of several enzymes and coenzymes in living organisms. Excess Co is highly toxic to plants. The knowledge of molecular response mechanisms to cobalt stress in plants is still limited, especially in woody plants. The responses of weeping willow (Salix babylonica) seedlings to Co stress were studied using morphological and physiochemical measurements and RNA-seq analysis. The physiological and biochemical indexes such as growth rate, the content of chlorophyll and soluble sugar, photosynthesis and peroxidase activity were all changed in willow seedlings under Co stress. The metal ion concentrations in willow including Cu, Zn and Mg were disturbed due to excess Co. Of 2002 differentially expressed genes (DEGs), 1165 were root-specific DEGs and 837 were stem and leaf-specific DEGs. Further analysis of DEGs showed there were multiple complex cascades in the response network at the transcriptome level under Co stress. Detailed elucidation of responses to oxidative stress, phytohormone signaling-related genes and transcription factors (TFs), and detoxification of excess cellular Co ion indicated the various defense mechanisms in plants respond to cobalt stress. Our findings provide new and comprehensive insights into the plant tolerance to excess Co stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012891 | PMC |
http://dx.doi.org/10.1038/s41598-020-59177-y | DOI Listing |
J Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001 China. Electronic address:
Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to its excellent specific capacity and low cost, but serious capacity degeneration induced by structural deterioration and interfacial instability greatly hamper their further development. Herein, the Sb-modified LiNiMnO materials from the interface to interior have been designed and fabricated to overcome the above issues. On the one hand, the introduction of Sb-ion in interior of grains can generate Sb-O chemical bond with high dissociation energy, which contributes to reinforce the chemical and structural stability.
View Article and Find Full Text PDFArab J Gastroenterol
January 2025
Department of Neonatology, Children's Hospital of Soochow University, Suzhou, PR China. Electronic address:
Background And Study Aims: Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in neonates. In vitro model is an indispensable tool to study the pathogenesis of NEC. This study explored the effects of different stress factors on intestinal injury in vitro.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115, India.
Contaminants are a major cause of seafood export rejections in foreign markets and have significantly impacted consumer health. This investigation addresses the issues of metal contamination and biochemical markers in Litopenaeus vannamei from East Midnapore, West Bengal, India. The analyzed metals included vanadium (V), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), molybdenum (Mo), silver (Ag), gallium (Ga), germanium (Ge), arsenic (As), selenium (Se), strontium (Sr), tin (Sn), cadmium (Cd), mercury (Hg), and lead (Pb), using Inductively Coupled Plasma Mass Spectrometry (ICP-MS).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
The current chemotherapy treatments for liver cancer have shown limited effectiveness. Therefore, there is an urgent need to develop new drugs to combat this disease more effectively. This study reports synthesis of cobalt oxide nanoparticles coated with glucose, and conjugated with Ellagic acid.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
The prerequisite for breeding a plant to be used in phytoremediation is its high tolerance to grow normally in soil contaminated by certain heavy metals. As mechanisms of plant uptake and transport of nickel (Ni) are not fully understood, it is of significance to utilize exogenous genes for improving plant Ni tolerance. In this study, from encoding an exporter of Ni and cobalt was overexpressed constitutively in , and the performance of transgenic plants was assayed under Ni stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!