Background: Radiation is an important therapeutic tool. However, radiotherapy has the potential to promote co-evolution of genetic and epigenetic changes that can drive tumour heterogeneity, formation of radioresistant cells and tumour relapse. There is a clinical need for a better understanding of DNA methylation alterations that may follow radiotherapy to be able to prevent the development of radiation-resistant cells.
Methods: We examined radiation-induced changes in DNA methylation profiles of paediatric glioma stem cells (GSCs) in vitro. Five GSC cultures were irradiated in vitro with repeated doses of 2 or 4 Gy. Radiation was given in 3 or 15 fractions. DNA methylation profiling using Illumina DNA methylation arrays was performed at 14 days post-radiation. The cellular characteristics were studied in parallel.
Results: Few fractions of radiation did not result in significant accumulation of DNA methylation alterations. However, extended dose fractionations changed DNA methylation profiles and induced thousands of differentially methylated positions, specifically in enhancer regions, sites involved in alternative splicing and in repetitive regions. Radiation induced dose-dependent morphological and proliferative alterations of the cells as a consequence of the radiation exposure.
Conclusions: DNA methylation alterations of sites with regulatory functions in proliferation and differentiation were identified, which may reflect cellular response to radiation stress through epigenetic reprogramming and differentiation cues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014676 | PMC |
http://dx.doi.org/10.1186/s13148-020-0817-8 | DOI Listing |
Genome Med
January 2025
Laboratory of Cytogenetics and Genome Research, Centre for Human Genetics, KU Leuven, Leuven, 3000, Belgium.
Background: A subset of developmental disorders (DD) is characterized by disease-specific genome-wide methylation changes. These episignatures inform on the underlying pathogenic mechanisms and can be used to assess the pathogenicity of genomic variants as well as confirm clinical diagnoses. Currently, the detection of these episignature requires the use of indirect methylation profiling methodologies.
View Article and Find Full Text PDFInflammation
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
Background: DNA methyltransferase 3A (Dnmt3a) is an enzyme that catalyzes the de novo methylation of DNA, and plays essential roles in a wide range of physiological and pathological processes. However, it remains unclear whether Porphyromonas gingivalis affects cementoblasts, the cells responsible for cementum formation, through Dnmt3a.
Methods: The samples were collected from models of mouse periapical lesions and mice of different ages, and the expression of Dnmt3a was detected through immunofluorescence.
NPJ Precis Oncol
January 2025
Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
Tumors of unknown origin (TUO) generally result in poor patient survival and are clinically difficult to address. Identification of the site of origin in TUO patients is paramount to their improved treatment and survival but is difficult to obtain with current methods. Here, we develop a random forest machine learning TUO methylation classifier using a large number of primary and metastatic tumor samples.
View Article and Find Full Text PDFSemin Reprod Med
January 2025
Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan.
Per- and polyfluoroalkyl substances (PFASs) are persistent environmental contaminants found in human tissues and persist in the environment, posing significant risks to reproductive health. This review examines the impact of PFAS exposure on male reproductive health, with a focus on sperm epigenetics. PFASs disrupt endocrine function by altering key reproductive hormones and impairing sperm motility, quality, and viability.
View Article and Find Full Text PDFGene
January 2025
Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China. Electronic address:
Objective: To investigate the relationship between DNA methylation of cord blood apoptosis genes and low birth weight (LBW).
Methods: A case-control study was conducted on 50 pairs of LBW neonates and normal birth weight. Genome-wide methylation assay was performed using Illumina Human Methylation EPIC microarray to analyze the methylation sites of apoptosis-related genes BCL-2, CASP3, and CASP8.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!