Lysosome is the principal organelle for the ultimate degradation of cellular macromolecules, which are delivered through endocytosis, phagocytosis, and autophagy. The lysosomal functions have been found to be impaired by fatty foods and aging, and more importantly, the lysosomal dysfunction in macrophages has been reported as a risk of atherosclerosis development. In this study, we searched for dietary polyphenols which possess the activity for enhancing the lysosomal degradation in J774.1, a murine macrophage-like cell line. Screening test utilizing DQ-BSA digestion identified isorhamnetin (3'--methylquercetin) as an active compound. Interestingly, structural comparison to inactive flavonols revealed that the chemical structure of the B-ring moiety in isorhamnetin is the primary determinant of its lysosome-enhancing activity. Unexpectedly isorhamnetin failed to inhibit mTORC1-TFEB signaling, a master regulator of lysosomal biogenesis and function. Our data suggested that the other molecular mechanism might be critical for the regulation of lysosomes in macrophages. ANOVA: analysis of variance; ApoE: apolipoprotein E; ATP6V0D2: ATPase H transporting V0 subunit d2; BAF: bafilomycin A1; BODIPY: boron dipyrromethene; BSA: bovine serum albumin; CTSD: cathepsin D; CTSF: cathepsin F; DMEM: Dulbecco's modified eagle medium; DMSO: dimethyl sulfoxide; EGCG: epigallocatechin-3-gallate; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HPLC: high-performance liquid chromatography; LAMP1: lysosomal-associated membrane protein 1; LAMP2A: lysosomal-associated membrane protein 2A; LC-MS/MS: liquid chromatography tandem mass spectrometry; MITF: microphthalmia-associated transcription factor; MRM: multiple reaction monitoring; mTORC1: mechanistic target of rapamycin complex 1; PBS: phosphate-buffered saline; PPARγ: peroxisome proliferator-activated receptor γ; RT-qPCR: reverse transcription quantitative polymerase chain reaction; SDS: sodium dodecyl sulfate; SNARE: soluble N-ethylmaleimide-sensitive-factor attachment protein receptor; TBS: Tris-buffered saline; TFA: trifluoroacetic acid; TFE3: transcription factor binding to IGHM enhancer 3; TFEB: transcriptional factor EB; TFEC: transcription factor EC; V-ATPase: vacuolar-type proton ATPase.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09168451.2020.1727309DOI Listing

Publication Analysis

Top Keywords

transcription factor
12
j7741 murine
8
bovine serum
8
liquid chromatography
8
lysosomal-associated membrane
8
membrane protein
8
lysosomal
5
isorhamnetin
4
isorhamnetin 3'-methoxylated
4
3'-methoxylated flavonol
4

Similar Publications

In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.

View Article and Find Full Text PDF

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).

View Article and Find Full Text PDF

The homo-dodecameric ring-shaped RNA binding attenuation protein (TRAP) from binds up to twelve tryptophan ligands (Trp) and becomes activated to bind a specific sequence in the 5' leader region of the operon mRNA, thereby downregulating biosynthesis of Trp. Thermodynamic measurements of Trp binding have revealed a range of cooperative behavior for different TRAP variants, even if the averaged apparent affinities for Trp have been found to be similar. Proximity between the ligand binding sites, and the ligand-coupled disorder-to-order transition has implicated nearest-neighbor interactions in cooperativity.

View Article and Find Full Text PDF

Deep conservation complemented by novelty and innovation in the insect eye ground plan.

Proc Natl Acad Sci U S A

January 2025

Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093.

A spectacular diversity of forms and features allow species to thrive in different environments, yet some structures remain relatively unchanged. Insect compound eyes are easily recognizable despite dramatic differences in visual abilities across species. It is unknown whether distant insect species use similar or different mechanisms to pattern their eyes or what types of genetic changes produce diversity of form and function.

View Article and Find Full Text PDF

ANAC044 orchestrates mitochondrial stress signaling to trigger iron-induced stem cell death in root meristems.

Proc Natl Acad Sci U S A

January 2025

Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!