The objective of this study was to evaluate whether the renin-angiotensin system (RAS) is associated with maternal cardioprotective phenotype observed in post-lactated mice later in life. Following the delivery, CD-1 female mice were randomized to one of the following groups: lactated (nursed pups for 3 weeks, n = 10) or non-lactated (pups were removed after birth, n = 10). The mice were sacrificed 6 months after the delivery, and tissues were collected. Protein levels of angiotensinogen, angiotensin type 1 and 2 receptors (AT1R, AT2R), angiotensin converting enzymes (ACE, ACE2), and MAS receptor were determined using Western blot. Results were analyzed using Student's t-test and Mann-Whitney test as appropriate (significance: P < 0.05). Angiotensinogen levels were significantly lower in the liver (P = 0.0002), and ACE was significantly decreased in the lungs (P = 0.04) and kidney (P = 0.001) from lactated mice as compared to non-lactated. The levels of AT2R in the kidney (P = 0.02) and visceral adipose tissue (VAT, P = 0.04), the ACE 2 in the VAT (P = 0.03) and heart (P = 0.04), and MAS receptor in VAT (P = 0.02) were significantly elevated in tissues from lactated mice. No other differences were found. Lactation led to the upregulation and downregulation of selected RAS components in lactated mice as compared to non-lactated group and may be a contributing factor to maternal cardioprotective phenotype later in life. Further studies are needed to dissect the mechanisms between lactation and the long-term maternal cardiometabolic benefits, which could lead to the therapies to prevent cardiovascular disease in women.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s43032-019-00018-3 | DOI Listing |
J Agric Food Chem
December 2024
State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China.
Lactic acid, an important organic acid, commonly exists in a variety of foods. During food processing, lactic acid may undergo dehydration and condensation with proteins. This study investigated the effect of lactylation on the sensitization of bovine β-lactoglobulin during food processing.
View Article and Find Full Text PDFBiomedicines
November 2024
Department of Pediatrics, University of Cincinnati College of Medicine, Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
: The severity of acute lung injury is significantly impacted by age and sex in patients with hemorrhagic shock. AMP-activated protein kinase (AMPK) is a crucial regulator of energy metabolism but its activity declines with aging. Humanin is a mitochondrial peptide that exerts cytoprotective effects in response to oxidative stressors and is associated with longevity.
View Article and Find Full Text PDFExp Eye Res
November 2024
Oregon Health & Science University, Casey Eye Institute, USA.
Our purpose was to develop a protocol for prolonged anesthesia in mice and evaluate optic nerve axon injury in response to 4 h of controlled elevation of intraocular pressure (CEI). During CEI, C57BL/6 male mice (3-5 months old) were anesthetized with 1.5% isoflurane with 100% oxygen for 4 h and placed on a warm platform, with expired gas and anesthetic actively evacuated.
View Article and Find Full Text PDFNutrients
September 2024
Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), University of Liverpool, Liverpool L7 8TX, UK.
Sarcopenia is characterised by the loss of skeletal muscle mass and function, which leads to a high risk of increased morbidity and mortality. Maternal malnutrition has been linked to impaired development of skeletal muscle of the offspring; however, there are limited studies that report the long-term effect of a maternal low-protein diet during lactation on the ageing of skeletal muscles. This study aimed to examine how a maternal low-protein diet (LPD) during lactation affects skeletal muscle ageing in the offspring.
View Article and Find Full Text PDFJ Transl Med
June 2024
Department of Surgery, University of California, San Francisco, 513 Parnassus Ave, San Francisco, CA, 94143, USA.
Background: Patients with hemorrhagic shock and trauma (HS/T) are vulnerable to the endotheliopathy of trauma (EOT), characterized by vascular barrier dysfunction, inflammation, and coagulopathy. Cellular therapies such as mesenchymal stem cells (MSCs) and MSC extracellular vesicles (EVs) have been proposed as potential therapies targeting the EOT. In this study we investigated the effects of MSCs and MSC EVs on endothelial and epithelial barrier integrity in vitro and in vivo in a mouse model of HS/T.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!