The solidification/stabilization (S/S) method is the usual technique for the remediation of soils polluted by heavy metal in recent years. However, freeze-thaw cycles, an important physical process producing weathering of materials, will affect the long-term stability of engineering characteristics in solidified contaminated soil. In addition, it is still questionable whether using large dosages of binders can enhance the engineering properties of solidified/stabilized contaminated soils. In this study, the three most commonly used binders (i.e., cement, quicklime, and fly ash), alone and mixed in different ratios, were thus added to lead-contaminated soil in various dosages, making a series of cured lead-contaminated soils with different dosages of binders. Afterward, unconfined compression strength tests, direct shear tests, and permeability tests were employed on the resulting samples to find the unconfined compressive strength (UCS), secant modulus ( E 50 ), internal friction angle ( φ ), cohesion ( c ), and permeability coefficient ( k ) of each solidified/stabilized lead-contaminated soil after 0, 3, 7, and 14 days of freeze-thaw cycles. This procedure was aimed at evaluating the influence of freeze-thaw cycle and binder dosage on engineering properties of solidified/stabilized lead-contaminated soils. Results of our experiments showed that cement/quicklime/fly ash could remediate lead-contaminated soils. However, it did not mean that the more the dosage of binder, the better the curing effect. There was a critical dosage. Excessive cementation of contaminated soils caused by too much binder would result in loss of strength and an increase in permeability. Furthermore, it was found that UCS, E 50 , φ , c , and k values generally decreased with the increase in freeze-thaw cycle time-a deterioration effect on the engineering characteristics of solidified lead-contaminated soils. Avoiding excessive cementation, 2.5% cement or quicklime was favorable for the value of E 50 while a 2.5% fly ash additive was beneficial for the k value. It is also suggested that if the freeze-thaw cycle continues beyond the period supported by excessive cementation, such a cycle will rapidly destroy the original structure of the soil and create large cracks, leading to an increase in permeability. The results also showed that the contaminated soils with a larger dosage of binders exhibited more significant deterioration during freeze-thaw cycles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037547 | PMC |
http://dx.doi.org/10.3390/ijerph17031077 | DOI Listing |
Biology (Basel)
December 2024
School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710600, China.
To obtain lead-resistant microorganisms as potential strains for bioremediation, in this study, a strain of fungus with high resistance to lead was isolated and domesticated from lead-contaminated soil, which was cultured and molecularly biologically identified as the genus Sarocladium Pb-9 (GenBank No. MK372219). The optimal incubation time of strain Pb-9 was 96 h, the optimal incubation temperature was 25 °C, and the optimal incubation pH was 7.
View Article and Find Full Text PDFInt J Phytoremediation
December 2024
Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing, PR China.
The flowing-water remediation of contaminated soil was investigated. Urease combined with biochar (UCB) technology was used to handle the Pb-contaminated sand column. The results showed that with the continuous increase of pore volume, the concentration of Pb in the leachate undergoes three stages: slow growth, rapid growth, and steady state.
View Article and Find Full Text PDFJ Environ Manage
November 2024
College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China. Electronic address:
Sci Total Environ
December 2024
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
Front Plant Sci
September 2024
Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China.
Microplastics (MPs) have garnered global attention as emerging contaminants due to their adaptability, durability, and robustness in various ecosystems. Still, studies concerning their combination with heavy metals (HMs), their interactions with soil biota, and how they affect soil physiochemical properties and terrestrial plant systems are limited. Our study was set to investigate the combined effect of HMs (cadmium, arsenic, copper, zinc and lead) contaminated soil of Tongling and different sizes (T1 = 106 µm, T2 = 50 µm, and T3 = 13 µm) of polystyrene microplastics on the soil physiochemical attributes, both bacterial and fungal diversity, compositions, AMF (arbuscular mycorrhizal fungi), plant pathogens in the soil, and their effect on by conducting a greenhouse experiment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!