Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Low back pain (LBP) is the most common work-related musculoskeletal disorder among healthcare workers and is directly related to long hours of working in twisted/bent postures or with awkward trunk movements. It has already been established that providing relevant feedback helps individuals to maintain better body posture during the activities of daily living. With the goal of preventing LBP through objective monitoring of back posture, this paper proposes a wireless, comfortable, and compact textile-based wearable platform to track trunk movements when the user bends forward. The smart garment developed for this purpose was prototyped with an inductive sensor formed by sewing a copper wire into an elastic fabric in a zigzag pattern. The results of an extensive simulation study showed that this unique design increases the inductance value of the sensor, and, consequently, improves its resolution. Furthermore, experimental evaluation on a healthy participant confirmed that the proposed wearable system with the suggested sensor design can easily detect forward bending movements. The evaluation scenario was then extended to also include twisting and lateral bending of the trunk, and it was observed that the proposed design can successfully discriminate such movements from forward bending of the trunk. Results of the magnetic interference test showed that, most notably, moving a cellphone towards the unworn prototype affects sensor readings, however, manipulating a cellphone, when wearing the prototype, did not affect the capability of the sensor in detecting forward bends. The proposed platform is a promising step toward developing wearable systems to monitor back posture in order to prevent or treat LBP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038988 | PMC |
http://dx.doi.org/10.3390/s20030905 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!