Physical and Mechanical Properties of Ammonia-Treated Black Locust Wood.

Polymers (Basel)

Faculty of Forestry, Forest Harvesting, Wood Processing Technologies and Landscape Architecture, Mytishchi Branch of Bauman Moscow State Technical University, 1st Institutskaya street, 141005 Mytischi, Moscow region, Russia.

Published: February 2020

Because of the uneven colour of black locust wood, different technologies are used to change the colour, the bestknown being chemical and thermal treatments. Some of them affect the mechanical properties of wood, such as elasticity modulus, strength, durability. This study aims to compare the physical and mechanical properties of black locust wood control samples and treated wood samples with ammonia hydroxide, in terms of density profile, colour values (CIE *, *, *), mechanical properties of samples subjected to static bending, viscous-elastic properties (storage modulus ('), loss modulus (") and damping (tan)).Two types of ammonia-fuming treatment were applied on samples: first treatment T1-5% concentration of ammonia hydroxide for 30 days; second treatment T2-10% concentration for 60 days. The results highlighted the following aspects: the overall colour change in the case of the second treatment is 27% in comparison with 7% recorded for the control samples; the lightness and yellowness values are the most affected by the second ammonia treatment of black locust wood. The density increased with almost 20% due to ammonium fuming (10% concentration/60 days); in case of static bending, the elastic modulus (MOE) tends to decrease with increasing the exposure time to ammonium, but the modulus of rupture (MOR) increases with almost 17% and the breaking force increases too, with almost 41%. In the case of dynamic mechanical analysis, the temperature leads to different viscous-elastic behaviour of each type of samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077457PMC
http://dx.doi.org/10.3390/polym12020377DOI Listing

Publication Analysis

Top Keywords

mechanical properties
16
black locust
16
locust wood
16
physical mechanical
8
control samples
8
ammonia hydroxide
8
static bending
8
second treatment
8
wood
6
samples
6

Similar Publications

Low fracture toughness, low-temperature degradation (LTD) susceptibility, and inadequate soft tissue integration greatly limit the application of zirconia ceramic abutment. Integrating the "surface" of hard all-ceramic materials into the gingival soft tissue and simultaneously promoting the "inner" LTD resistance and fracture toughness is challenging. Composite ceramics are effective in improving the comprehensive properties of materials.

View Article and Find Full Text PDF

Impact of chlorine dioxide and chlorhexidine mouthwashes on friction and surface roughness of orthodontic stainless steel wires: an in-vitro comparative study.

F1000Res

January 2025

Department of Orthodontics and Dentofacial Orthopaedics, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karanataka, 576104, India.

Objectives: Good oral hygiene measures are important for successful orthodontic treatment. They involve various types of mouthwashes which have been reported to cause alteration of mechanical properties of archwires. This study aimed to evaluate the effects of a new kind of chlorine-dioxide-containing mouthwash on the mechanical properties and surface morphology of stainless steel orthodontic archwires against the already prevalent chlorhexidine mouthwash in the market.

View Article and Find Full Text PDF

Background: Post-surgical tendon adhesion formation is a frequent clinical complication with limited treatment options. The aim of this study is to investigate safety and efficacy of orally administration of crocin in attenuating post-operative tendon-sheath adhesion bands in an Achilles tendon rat model.

Methods: Structural, mechanical, histological, and biochemical properties of Achilles tendons were analyzed in the presence and absence of crocin.

View Article and Find Full Text PDF

This study investigates the enhancement of gelatin (GEL) films using hydroxypropyl methylcellulose (HPMC) and carboxymethyl cellulose (CMC) for edible film packaging applications. Although GEL is biocompatible and cost-effective, its limited mechanical strength presents significant challenges for practical applications. The findings indicate that CMC effectively increases tensile strength (TS), while HPMC improves elongation at break (EAB) and hydrophilicity.

View Article and Find Full Text PDF

A Silicon-containing Oligomeric Charring Agent (CNCSi-DA) containing triazine rings and silicon was designed, synthesized and characterized. CNCSi-DA was chosen as macromolecular coating agent to modify Ammonium Polyphosphate (APP) to be core-shell coating-mixture (APP@CNCSi-DA). The synergistic effects of APP@CNCSi-DA on hydrophobicity, mechanical and flame retardant properties, and mechanism of flame-retardant polypropylene (PP) were studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!