Dried Leaf Improves Bioavailability of Artemisinin via Cytochrome P450 Inhibition and Enhances Artemisinin Efficacy Downstream.

Biomolecules

Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA.

Published: February 2020

L. and artemisinin, have been used for millennia to treat malaria. We used human liver microsomes (HLM) and rats to compare hepatic metabolism, tissue distribution, and inflammation attenuation by dried leaves of (DLA) and pure artemisinin. For HLM assays, extracts, teas, and phytochemicals from DLA were tested and IC values for CYP2B6 and CYP3A4 were measured. For tissue distribution studies, artemisinin or DLA was orally delivered to rats, tissues harvested at 1 h, and blood, urine and feces over 8 h; all were analyzed for artemisinin and deoxyartemisinin by GC-MS. For inflammation, rats received an intraperitoneal injection of water or lipopolysaccharide (LPS) and 70 mg/kg oral artemisinin as pure drug or DLA. Serum was collected over 8 h and analyzed by ELISA for TNF-α, IL-6, and IL-10. DLA-delivered artemisinin distributed to tissues in higher concentrations in vivo, but elimination remained mostly unchanged. This seemed to be due to inhibition of first-pass metabolism by DLA phytochemicals, as demonstrated by HLM assays of DLA extracts, teas and phytochemicals. DLA was more effective than artemisinin in males at attenuating proinflammatory cytokine production; the data were less conclusive in females. These results suggest that the oral consumption of artemisinin as DLA enhances the bioavailability and anti-inflammatory potency of artemisinin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072484PMC
http://dx.doi.org/10.3390/biom10020254DOI Listing

Publication Analysis

Top Keywords

artemisinin
11
tissue distribution
8
dla
8
hlm assays
8
extracts teas
8
teas phytochemicals
8
phytochemicals dla
8
artemisinin dla
8
dried leaf
4
leaf improves
4

Similar Publications

Discovery of D-Ring-Contracted Artemisinin as a Potent Hydrophobic Tag for Targeted Protein Degradation.

J Med Chem

January 2025

Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China.

The relentless pursuit of innovative hydrophobic tags remains a formidable challenge within the realm of targeted protein degradation. Herein, we have uncovered the remarkable potential of D-ring-contracted artemisinin as a potent hydrophobic tag that demonstrates exceptional degradation efficiency. We have crafted a series of conjugates by fusing D-ring-contracted artemisinin with raloxifene, and among these, has emerged as a promising candidate for degrading estrogen receptor α (ERα).

View Article and Find Full Text PDF

Artemisinin (ART), a natural product isolated from the traditional Chinese plant Artemisia annua L., has shown neuroprotective properties in addition to its well-established antimalarial activities. This study investigates the therapeutic effect of ART in ischemic stroke (IS) and delves into its functional mechanism.

View Article and Find Full Text PDF

Modified dosing schedule efficacy of fosmidomycin and clindamycin against murine malaria Plasmodium berghei.

Int J Parasitol Drugs Drug Resist

December 2024

W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21210, USA. Electronic address:

Fosmidomycin and clindamycin target the Plasmodium apicoplast. Combination clinical trials have produced mixed results with the primary problem being the recrudescent infection frequency by day 28. Given that antibiotic efficacy against bacterial infections often depends on the constant drug presence over several days, we hypothesized that the antimalarial blood or liver stage efficacy of fosmidomycin and clindamycin could be improved by implementing a more frequent dosing schedule.

View Article and Find Full Text PDF

The recent pernicious COVID-19 pandemic is caused by SARS-CoV-2. While most therapeutic strategies have focused on the viral spike protein, Open Reading Frame 8 (ORF8) plays a critical role in causing the severity of the disease. Nonetheless, there still needs to be more information on the ORF8 binding epitopes and their appropriate safe inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!