This paper presents the dielectric characteristics of nanocomposite films of poly(vinyl alcohol) (PVA) embedded with silver (Ag) nanoparticles and graphene oxide(GO). The nanocomposite films were fabricated by using the solvent casting approach. The morphological analysis was carried out through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The dielectric relaxation behavior of nanocomposite films was analyzed in the frequency range of 10 to 10 Hz, by varying GO loading. The temperature effect was investigated over the temperature range of 40 to 150 °C. The effect of ionic liquid (IL) was also explored by comparing the dielectric behavior of films fabricated without using ionic liquid. The conductive filler loading variation showed a significant effect on dielectric permittivity(ε'), complex impedance (Z*) and electric conductivity (σ) The obtained results revealed that the dielectric permittivity (ε') increased by incorporating Ag nanoparticles and increasing GO loading in PVA matrix. An incremental trend in dielectric permittivity was observed on increasing the temperature, which is attributed to tunneling and hopping mechanism. With an increase in nanofiller loading, the real part of impedance (Z') and imaginary part of impedance (Z'') were found to decrease. Further, the semicircular nature of Nyquist plot indicated the decrease in bulk resistivity on increasing GO loading, temperature and incorporating ionic liquid. On the basis of above findings, the obtained GO-Ag-PVA nanocomposite films can find promising applications in charge storage devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077489PMC
http://dx.doi.org/10.3390/polym12020374DOI Listing

Publication Analysis

Top Keywords

ionic liquid
16
nanocomposite films
16
dielectric relaxation
8
relaxation behavior
8
silver nanoparticles
8
nanoparticles graphene
8
polyvinyl alcohol
8
films fabricated
8
electron microscopy
8
loading temperature
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!